Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y (complex solution)
Tick mark Image
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2ax+by=14,-2x+9y=-19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2ax+by=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2ax=\left(-b\right)y+14
Me tango by mai i ngā taha e rua o te whārite.
x=\frac{1}{2a}\left(\left(-b\right)y+14\right)
Whakawehea ngā taha e rua ki te 2a.
x=\left(-\frac{b}{2a}\right)y+\frac{7}{a}
Whakareatia \frac{1}{2a} ki te -by+14.
-2\left(\left(-\frac{b}{2a}\right)y+\frac{7}{a}\right)+9y=-19
Whakakapia te \frac{-by+14}{2a} mō te x ki tērā atu whārite, -2x+9y=-19.
\frac{b}{a}y-\frac{14}{a}+9y=-19
Whakareatia -2 ki te \frac{-by+14}{2a}.
\left(\frac{b}{a}+9\right)y-\frac{14}{a}=-19
Tāpiri \frac{by}{a} ki te 9y.
\left(\frac{b}{a}+9\right)y=-19+\frac{14}{a}
Me tāpiri \frac{14}{a} ki ngā taha e rua o te whārite.
y=\frac{14-19a}{9a+b}
Whakawehea ngā taha e rua ki te 9+\frac{b}{a}.
x=\left(-\frac{b}{2a}\right)\times \frac{14-19a}{9a+b}+\frac{7}{a}
Whakaurua te \frac{14-19a}{9a+b} mō y ki x=\left(-\frac{b}{2a}\right)y+\frac{7}{a}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{b\left(14-19a\right)}{2a\left(9a+b\right)}+\frac{7}{a}
Whakareatia -\frac{b}{2a} ki te \frac{14-19a}{9a+b}.
x=\frac{19b+126}{2\left(9a+b\right)}
Tāpiri \frac{7}{a} ki te -\frac{b\left(14-19a\right)}{2a\left(9a+b\right)}.
x=\frac{19b+126}{2\left(9a+b\right)},y=\frac{14-19a}{9a+b}
Kua oti te pūnaha te whakatau.
2ax+by=14,-2x+9y=-19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}14\\-19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2a&b\\-2&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}14\\-19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}14\\-19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2a\times 9-b\left(-2\right)}&-\frac{b}{2a\times 9-b\left(-2\right)}\\-\frac{-2}{2a\times 9-b\left(-2\right)}&\frac{2a}{2a\times 9-b\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}14\\-19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\left(9a+b\right)}&-\frac{b}{2\left(9a+b\right)}\\\frac{1}{9a+b}&\frac{a}{9a+b}\end{matrix}\right)\left(\begin{matrix}14\\-19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\left(9a+b\right)}\times 14+\left(-\frac{b}{2\left(9a+b\right)}\right)\left(-19\right)\\\frac{1}{9a+b}\times 14+\frac{a}{9a+b}\left(-19\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19b+126}{2\left(9a+b\right)}\\\frac{14-19a}{9a+b}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{19b+126}{2\left(9a+b\right)},y=\frac{14-19a}{9a+b}
Tangohia ngā huānga poukapa x me y.
2ax+by=14,-2x+9y=-19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 2ax-2by=-2\times 14,2a\left(-2\right)x+2a\times 9y=2a\left(-19\right)
Kia ōrite ai a 2ax me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2a.
\left(-4a\right)x+\left(-2b\right)y=-28,\left(-4a\right)x+18ay=-38a
Whakarūnātia.
\left(-4a\right)x+4ax+\left(-2b\right)y+\left(-18a\right)y=-28+38a
Me tango \left(-4a\right)x+18ay=-38a mai i \left(-4a\right)x+\left(-2b\right)y=-28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-2b\right)y+\left(-18a\right)y=-28+38a
Tāpiri -4ax ki te 4ax. Ka whakakore atu ngā kupu -4ax me 4ax, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-18a-2b\right)y=-28+38a
Tāpiri -2by ki te -18ay.
\left(-18a-2b\right)y=38a-28
Tāpiri -28 ki te 38a.
y=-\frac{19a-14}{9a+b}
Whakawehea ngā taha e rua ki te -2b-18a.
-2x+9\left(-\frac{19a-14}{9a+b}\right)=-19
Whakaurua te -\frac{-14+19a}{b+9a} mō y ki -2x+9y=-19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-\frac{9\left(19a-14\right)}{9a+b}=-19
Whakareatia 9 ki te -\frac{-14+19a}{b+9a}.
-2x=-\frac{19b+126}{9a+b}
Me tāpiri \frac{9\left(-14+19a\right)}{b+9a} ki ngā taha e rua o te whārite.
x=\frac{19b+126}{2\left(9a+b\right)}
Whakawehea ngā taha e rua ki te -2.
x=\frac{19b+126}{2\left(9a+b\right)},y=-\frac{19a-14}{9a+b}
Kua oti te pūnaha te whakatau.
2ax+by=14,-2x+9y=-19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2ax+by=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2ax=\left(-b\right)y+14
Me tango by mai i ngā taha e rua o te whārite.
x=\frac{1}{2a}\left(\left(-b\right)y+14\right)
Whakawehea ngā taha e rua ki te 2a.
x=\left(-\frac{b}{2a}\right)y+\frac{7}{a}
Whakareatia \frac{1}{2a} ki te -by+14.
-2\left(\left(-\frac{b}{2a}\right)y+\frac{7}{a}\right)+9y=-19
Whakakapia te \frac{-by+14}{2a} mō te x ki tērā atu whārite, -2x+9y=-19.
\frac{b}{a}y-\frac{14}{a}+9y=-19
Whakareatia -2 ki te \frac{-by+14}{2a}.
\left(\frac{b}{a}+9\right)y-\frac{14}{a}=-19
Tāpiri \frac{by}{a} ki te 9y.
\left(\frac{b}{a}+9\right)y=-19+\frac{14}{a}
Me tāpiri \frac{14}{a} ki ngā taha e rua o te whārite.
y=\frac{14-19a}{9a+b}
Whakawehea ngā taha e rua ki te 9+\frac{b}{a}.
x=\left(-\frac{b}{2a}\right)\times \frac{14-19a}{9a+b}+\frac{7}{a}
Whakaurua te \frac{14-19a}{9a+b} mō y ki x=\left(-\frac{b}{2a}\right)y+\frac{7}{a}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{b\left(14-19a\right)}{2a\left(9a+b\right)}+\frac{7}{a}
Whakareatia -\frac{b}{2a} ki te \frac{14-19a}{9a+b}.
x=\frac{19b+126}{2\left(9a+b\right)}
Tāpiri \frac{7}{a} ki te -\frac{b\left(14-19a\right)}{2a\left(9a+b\right)}.
x=\frac{19b+126}{2\left(9a+b\right)},y=\frac{14-19a}{9a+b}
Kua oti te pūnaha te whakatau.
2ax+by=14,-2x+9y=-19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}14\\-19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2a&b\\-2&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}14\\-19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2a&b\\-2&9\end{matrix}\right))\left(\begin{matrix}14\\-19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2a\times 9-b\left(-2\right)}&-\frac{b}{2a\times 9-b\left(-2\right)}\\-\frac{-2}{2a\times 9-b\left(-2\right)}&\frac{2a}{2a\times 9-b\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}14\\-19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\left(9a+b\right)}&-\frac{b}{2\left(9a+b\right)}\\\frac{1}{9a+b}&\frac{a}{9a+b}\end{matrix}\right)\left(\begin{matrix}14\\-19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\left(9a+b\right)}\times 14+\left(-\frac{b}{2\left(9a+b\right)}\right)\left(-19\right)\\\frac{1}{9a+b}\times 14+\frac{a}{9a+b}\left(-19\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19b+126}{2\left(9a+b\right)}\\\frac{14-19a}{9a+b}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{19b+126}{2\left(9a+b\right)},y=\frac{14-19a}{9a+b}
Tangohia ngā huānga poukapa x me y.
2ax+by=14,-2x+9y=-19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 2ax-2by=-2\times 14,2a\left(-2\right)x+2a\times 9y=2a\left(-19\right)
Kia ōrite ai a 2ax me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2a.
\left(-4a\right)x+\left(-2b\right)y=-28,\left(-4a\right)x+18ay=-38a
Whakarūnātia.
\left(-4a\right)x+4ax+\left(-2b\right)y+\left(-18a\right)y=-28+38a
Me tango \left(-4a\right)x+18ay=-38a mai i \left(-4a\right)x+\left(-2b\right)y=-28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-2b\right)y+\left(-18a\right)y=-28+38a
Tāpiri -4ax ki te 4ax. Ka whakakore atu ngā kupu -4ax me 4ax, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-18a-2b\right)y=-28+38a
Tāpiri -2by ki te -18ay.
\left(-18a-2b\right)y=38a-28
Tāpiri -28 ki te 38a.
y=-\frac{19a-14}{9a+b}
Whakawehea ngā taha e rua ki te -2b-18a.
-2x+9\left(-\frac{19a-14}{9a+b}\right)=-19
Whakaurua te -\frac{-14+19a}{b+9a} mō y ki -2x+9y=-19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-\frac{9\left(19a-14\right)}{9a+b}=-19
Whakareatia 9 ki te -\frac{-14+19a}{b+9a}.
-2x=-\frac{19b+126}{9a+b}
Me tāpiri \frac{9\left(-14+19a\right)}{b+9a} ki ngā taha e rua o te whārite.
x=\frac{19b+126}{2\left(9a+b\right)}
Whakawehea ngā taha e rua ki te -2.
x=\frac{19b+126}{2\left(9a+b\right)},y=-\frac{19a-14}{9a+b}
Kua oti te pūnaha te whakatau.