\left\{ \begin{array} { l } { 2 a - b = 1 } \\ { 2 b - c = 1 } \\ { 2 a + c = 1 } \end{array} \right.
Whakaoti mō a, b, c
a=\frac{2}{3}\approx 0.666666667
b=\frac{1}{3}\approx 0.333333333
c=-\frac{1}{3}\approx -0.333333333
Tohaina
Kua tāruatia ki te papatopenga
b=2a-1
Me whakaoti te 2a-b=1 mō b.
2\left(2a-1\right)-c=1
Whakakapia te 2a-1 mō te b i te whārite 2b-c=1.
a=\frac{3}{4}+\frac{1}{4}c c=-2a+1
Me whakaoti te whārite tuarua mō a me te whārite tuatoru mō c.
c=-2\left(\frac{3}{4}+\frac{1}{4}c\right)+1
Whakakapia te \frac{3}{4}+\frac{1}{4}c mō te a i te whārite c=-2a+1.
c=-\frac{1}{3}
Me whakaoti te c=-2\left(\frac{3}{4}+\frac{1}{4}c\right)+1 mō c.
a=\frac{3}{4}+\frac{1}{4}\left(-\frac{1}{3}\right)
Whakakapia te -\frac{1}{3} mō te c i te whārite a=\frac{3}{4}+\frac{1}{4}c.
a=\frac{2}{3}
Tātaitia te a i te a=\frac{3}{4}+\frac{1}{4}\left(-\frac{1}{3}\right).
b=2\times \frac{2}{3}-1
Whakakapia te \frac{2}{3} mō te a i te whārite b=2a-1.
b=\frac{1}{3}
Tātaitia te b i te b=2\times \frac{2}{3}-1.
a=\frac{2}{3} b=\frac{1}{3} c=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}