Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2a-3b=0
Whakaarohia te whārite tuatahi. Tangohia te 3b mai i ngā taha e rua.
2a-3b=0,7a+2b=200
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a-3b=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a=3b
Me tāpiri 3b ki ngā taha e rua o te whārite.
a=\frac{1}{2}\times 3b
Whakawehea ngā taha e rua ki te 2.
a=\frac{3}{2}b
Whakareatia \frac{1}{2} ki te 3b.
7\times \frac{3}{2}b+2b=200
Whakakapia te \frac{3b}{2} mō te a ki tērā atu whārite, 7a+2b=200.
\frac{21}{2}b+2b=200
Whakareatia 7 ki te \frac{3b}{2}.
\frac{25}{2}b=200
Tāpiri \frac{21b}{2} ki te 2b.
b=16
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=\frac{3}{2}\times 16
Whakaurua te 16 mō b ki a=\frac{3}{2}b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=24
Whakareatia \frac{3}{2} ki te 16.
a=24,b=16
Kua oti te pūnaha te whakatau.
2a-3b=0
Whakaarohia te whārite tuatahi. Tangohia te 3b mai i ngā taha e rua.
2a-3b=0,7a+2b=200
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\7&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\200\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}2&-3\\7&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}0\\200\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}0\\200\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}0\\200\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 7\right)}&-\frac{-3}{2\times 2-\left(-3\times 7\right)}\\-\frac{7}{2\times 2-\left(-3\times 7\right)}&\frac{2}{2\times 2-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}0\\200\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{25}&\frac{3}{25}\\-\frac{7}{25}&\frac{2}{25}\end{matrix}\right)\left(\begin{matrix}0\\200\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\times 200\\\frac{2}{25}\times 200\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}24\\16\end{matrix}\right)
Mahia ngā tātaitanga.
a=24,b=16
Tangohia ngā huānga poukapa a me b.
2a-3b=0
Whakaarohia te whārite tuatahi. Tangohia te 3b mai i ngā taha e rua.
2a-3b=0,7a+2b=200
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 2a+7\left(-3\right)b=0,2\times 7a+2\times 2b=2\times 200
Kia ōrite ai a 2a me 7a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
14a-21b=0,14a+4b=400
Whakarūnātia.
14a-14a-21b-4b=-400
Me tango 14a+4b=400 mai i 14a-21b=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-21b-4b=-400
Tāpiri 14a ki te -14a. Ka whakakore atu ngā kupu 14a me -14a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-25b=-400
Tāpiri -21b ki te -4b.
b=16
Whakawehea ngā taha e rua ki te -25.
7a+2\times 16=200
Whakaurua te 16 mō b ki 7a+2b=200. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
7a+32=200
Whakareatia 2 ki te 16.
7a=168
Me tango 32 mai i ngā taha e rua o te whārite.
a=24
Whakawehea ngā taha e rua ki te 7.
a=24,b=16
Kua oti te pūnaha te whakatau.