\left\{ \begin{array} { l } { 2 a + 3 b = 4 } \\ { 3 a - 8 b = 5 } \end{array} \right.
Whakaoti mō a, b
a = \frac{47}{25} = 1\frac{22}{25} = 1.88
b=\frac{2}{25}=0.08
Tohaina
Kua tāruatia ki te papatopenga
2a+3b=4,3a-8b=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a+3b=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a=-3b+4
Me tango 3b mai i ngā taha e rua o te whārite.
a=\frac{1}{2}\left(-3b+4\right)
Whakawehea ngā taha e rua ki te 2.
a=-\frac{3}{2}b+2
Whakareatia \frac{1}{2} ki te -3b+4.
3\left(-\frac{3}{2}b+2\right)-8b=5
Whakakapia te -\frac{3b}{2}+2 mō te a ki tērā atu whārite, 3a-8b=5.
-\frac{9}{2}b+6-8b=5
Whakareatia 3 ki te -\frac{3b}{2}+2.
-\frac{25}{2}b+6=5
Tāpiri -\frac{9b}{2} ki te -8b.
-\frac{25}{2}b=-1
Me tango 6 mai i ngā taha e rua o te whārite.
b=\frac{2}{25}
Whakawehea ngā taha e rua o te whārite ki te -\frac{25}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{3}{2}\times \frac{2}{25}+2
Whakaurua te \frac{2}{25} mō b ki a=-\frac{3}{2}b+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{3}{25}+2
Whakareatia -\frac{3}{2} ki te \frac{2}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{47}{25}
Tāpiri 2 ki te -\frac{3}{25}.
a=\frac{47}{25},b=\frac{2}{25}
Kua oti te pūnaha te whakatau.
2a+3b=4,3a-8b=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&-8\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&-8\end{matrix}\right))\left(\begin{matrix}2&3\\3&-8\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-8\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-8\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-8\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{2\left(-8\right)-3\times 3}&-\frac{3}{2\left(-8\right)-3\times 3}\\-\frac{3}{2\left(-8\right)-3\times 3}&\frac{2}{2\left(-8\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{8}{25}&\frac{3}{25}\\\frac{3}{25}&-\frac{2}{25}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{8}{25}\times 4+\frac{3}{25}\times 5\\\frac{3}{25}\times 4-\frac{2}{25}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{47}{25}\\\frac{2}{25}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{47}{25},b=\frac{2}{25}
Tangohia ngā huānga poukapa a me b.
2a+3b=4,3a-8b=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2a+3\times 3b=3\times 4,2\times 3a+2\left(-8\right)b=2\times 5
Kia ōrite ai a 2a me 3a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6a+9b=12,6a-16b=10
Whakarūnātia.
6a-6a+9b+16b=12-10
Me tango 6a-16b=10 mai i 6a+9b=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9b+16b=12-10
Tāpiri 6a ki te -6a. Ka whakakore atu ngā kupu 6a me -6a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
25b=12-10
Tāpiri 9b ki te 16b.
25b=2
Tāpiri 12 ki te -10.
b=\frac{2}{25}
Whakawehea ngā taha e rua ki te 25.
3a-8\times \frac{2}{25}=5
Whakaurua te \frac{2}{25} mō b ki 3a-8b=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
3a-\frac{16}{25}=5
Whakareatia -8 ki te \frac{2}{25}.
3a=\frac{141}{25}
Me tāpiri \frac{16}{25} ki ngā taha e rua o te whārite.
a=\frac{47}{25}
Whakawehea ngā taha e rua ki te 3.
a=\frac{47}{25},b=\frac{2}{25}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}