\left\{ \begin{array} { l } { 2 a + 3 b = 4 } \\ { - 2 a + 3 b = - 16 } \end{array} \right.
Whakaoti mō a, b
a=5
b=-2
Tohaina
Kua tāruatia ki te papatopenga
2a+3b=4,-2a+3b=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a+3b=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a=-3b+4
Me tango 3b mai i ngā taha e rua o te whārite.
a=\frac{1}{2}\left(-3b+4\right)
Whakawehea ngā taha e rua ki te 2.
a=-\frac{3}{2}b+2
Whakareatia \frac{1}{2} ki te -3b+4.
-2\left(-\frac{3}{2}b+2\right)+3b=-16
Whakakapia te -\frac{3b}{2}+2 mō te a ki tērā atu whārite, -2a+3b=-16.
3b-4+3b=-16
Whakareatia -2 ki te -\frac{3b}{2}+2.
6b-4=-16
Tāpiri 3b ki te 3b.
6b=-12
Me tāpiri 4 ki ngā taha e rua o te whārite.
b=-2
Whakawehea ngā taha e rua ki te 6.
a=-\frac{3}{2}\left(-2\right)+2
Whakaurua te -2 mō b ki a=-\frac{3}{2}b+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=3+2
Whakareatia -\frac{3}{2} ki te -2.
a=5
Tāpiri 2 ki te 3.
a=5,b=-2
Kua oti te pūnaha te whakatau.
2a+3b=4,-2a+3b=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\left(-2\right)}&-\frac{3}{2\times 3-3\left(-2\right)}\\-\frac{-2}{2\times 3-3\left(-2\right)}&\frac{2}{2\times 3-3\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}4\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 4-\frac{1}{4}\left(-16\right)\\\frac{1}{6}\times 4+\frac{1}{6}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
a=5,b=-2
Tangohia ngā huānga poukapa a me b.
2a+3b=4,-2a+3b=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2a+2a+3b-3b=4+16
Me tango -2a+3b=-16 mai i 2a+3b=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2a+2a=4+16
Tāpiri 3b ki te -3b. Ka whakakore atu ngā kupu 3b me -3b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4a=4+16
Tāpiri 2a ki te 2a.
4a=20
Tāpiri 4 ki te 16.
a=5
Whakawehea ngā taha e rua ki te 4.
-2\times 5+3b=-16
Whakaurua te 5 mō a ki -2a+3b=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
-10+3b=-16
Whakareatia -2 ki te 5.
3b=-6
Me tāpiri 10 ki ngā taha e rua o te whārite.
b=-2
Whakawehea ngā taha e rua ki te 3.
a=5,b=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}