\left\{ \begin{array} { l } { 2 - y = 2 ( 6 x + 3 ) + y } \\ { x + 4 = 3 y } \end{array} \right.
Whakaoti mō y, x
x=-\frac{10}{19}\approx -0.526315789
y = \frac{22}{19} = 1\frac{3}{19} \approx 1.157894737
Graph
Tohaina
Kua tāruatia ki te papatopenga
2-y=12x+6+y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+3.
2-y-12x=6+y
Tangohia te 12x mai i ngā taha e rua.
2-y-12x-y=6
Tangohia te y mai i ngā taha e rua.
2-2y-12x=6
Pahekotia te -y me -y, ka -2y.
-2y-12x=6-2
Tangohia te 2 mai i ngā taha e rua.
-2y-12x=4
Tangohia te 2 i te 6, ka 4.
x+4-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2y-12x=4,-3y+x=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2y-12x=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-2y=12x+4
Me tāpiri 12x ki ngā taha e rua o te whārite.
y=-\frac{1}{2}\left(12x+4\right)
Whakawehea ngā taha e rua ki te -2.
y=-6x-2
Whakareatia -\frac{1}{2} ki te 12x+4.
-3\left(-6x-2\right)+x=-4
Whakakapia te -6x-2 mō te y ki tērā atu whārite, -3y+x=-4.
18x+6+x=-4
Whakareatia -3 ki te -6x-2.
19x+6=-4
Tāpiri 18x ki te x.
19x=-10
Me tango 6 mai i ngā taha e rua o te whārite.
x=-\frac{10}{19}
Whakawehea ngā taha e rua ki te 19.
y=-6\left(-\frac{10}{19}\right)-2
Whakaurua te -\frac{10}{19} mō x ki y=-6x-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{60}{19}-2
Whakareatia -6 ki te -\frac{10}{19}.
y=\frac{22}{19}
Tāpiri -2 ki te \frac{60}{19}.
y=\frac{22}{19},x=-\frac{10}{19}
Kua oti te pūnaha te whakatau.
2-y=12x+6+y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+3.
2-y-12x=6+y
Tangohia te 12x mai i ngā taha e rua.
2-y-12x-y=6
Tangohia te y mai i ngā taha e rua.
2-2y-12x=6
Pahekotia te -y me -y, ka -2y.
-2y-12x=6-2
Tangohia te 2 mai i ngā taha e rua.
-2y-12x=4
Tangohia te 2 i te 6, ka 4.
x+4-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2y-12x=4,-3y+x=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right))\left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-12\\-3&1\end{matrix}\right))\left(\begin{matrix}4\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-2-\left(-12\left(-3\right)\right)}&-\frac{-12}{-2-\left(-12\left(-3\right)\right)}\\-\frac{-3}{-2-\left(-12\left(-3\right)\right)}&-\frac{2}{-2-\left(-12\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{38}&-\frac{6}{19}\\-\frac{3}{38}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}4\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{38}\times 4-\frac{6}{19}\left(-4\right)\\-\frac{3}{38}\times 4+\frac{1}{19}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{22}{19}\\-\frac{10}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{22}{19},x=-\frac{10}{19}
Tangohia ngā huānga poukapa y me x.
2-y=12x+6+y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+3.
2-y-12x=6+y
Tangohia te 12x mai i ngā taha e rua.
2-y-12x-y=6
Tangohia te y mai i ngā taha e rua.
2-2y-12x=6
Pahekotia te -y me -y, ka -2y.
-2y-12x=6-2
Tangohia te 2 mai i ngā taha e rua.
-2y-12x=4
Tangohia te 2 i te 6, ka 4.
x+4-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2y-12x=4,-3y+x=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\left(-2\right)y-3\left(-12\right)x=-3\times 4,-2\left(-3\right)y-2x=-2\left(-4\right)
Kia ōrite ai a -2y me -3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
6y+36x=-12,6y-2x=8
Whakarūnātia.
6y-6y+36x+2x=-12-8
Me tango 6y-2x=8 mai i 6y+36x=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36x+2x=-12-8
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
38x=-12-8
Tāpiri 36x ki te 2x.
38x=-20
Tāpiri -12 ki te -8.
x=-\frac{10}{19}
Whakawehea ngā taha e rua ki te 38.
-3y-\frac{10}{19}=-4
Whakaurua te -\frac{10}{19} mō x ki -3y+x=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-3y=-\frac{66}{19}
Me tāpiri \frac{10}{19} ki ngā taha e rua o te whārite.
y=\frac{22}{19}
Whakawehea ngā taha e rua ki te -3.
y=\frac{22}{19},x=-\frac{10}{19}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}