\left\{ \begin{array} { l } { 2 ( x + y ) - ( x - y ) = 3 } \\ { ( x + y ) - 2 ( x - y ) = 1 } \end{array} \right.
Whakaoti mō x, y
x=1
y=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+2y-\left(x-y\right)=3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y-x+y=3
Hei kimi i te tauaro o x-y, kimihia te tauaro o ia taurangi.
x+2y+y=3
Pahekotia te 2x me -x, ka x.
x+3y=3
Pahekotia te 2y me y, ka 3y.
x+y-2x+2y=1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-y.
-x+y+2y=1
Pahekotia te x me -2x, ka -x.
-x+3y=1
Pahekotia te y me 2y, ka 3y.
x+3y=3,-x+3y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+3y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-3y+3
Me tango 3y mai i ngā taha e rua o te whārite.
-\left(-3y+3\right)+3y=1
Whakakapia te -3y+3 mō te x ki tērā atu whārite, -x+3y=1.
3y-3+3y=1
Whakareatia -1 ki te -3y+3.
6y-3=1
Tāpiri 3y ki te 3y.
6y=4
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=\frac{2}{3}
Whakawehea ngā taha e rua ki te 6.
x=-3\times \frac{2}{3}+3
Whakaurua te \frac{2}{3} mō y ki x=-3y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2+3
Whakareatia -3 ki te \frac{2}{3}.
x=1
Tāpiri 3 ki te -2.
x=1,y=\frac{2}{3}
Kua oti te pūnaha te whakatau.
2x+2y-\left(x-y\right)=3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y-x+y=3
Hei kimi i te tauaro o x-y, kimihia te tauaro o ia taurangi.
x+2y+y=3
Pahekotia te 2x me -x, ka x.
x+3y=3
Pahekotia te 2y me y, ka 3y.
x+y-2x+2y=1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-y.
-x+y+2y=1
Pahekotia te x me -2x, ka -x.
-x+3y=1
Pahekotia te y me 2y, ka 3y.
x+3y=3,-x+3y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\-1&3\end{matrix}\right))\left(\begin{matrix}1&3\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\-1&3\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\-1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\-1&3\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\-1&3\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-3\left(-1\right)}&-\frac{3}{3-3\left(-1\right)}\\-\frac{-1}{3-3\left(-1\right)}&\frac{1}{3-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\\\frac{1}{6}\times 3+\frac{1}{6}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\\frac{2}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=\frac{2}{3}
Tangohia ngā huānga poukapa x me y.
2x+2y-\left(x-y\right)=3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+y.
2x+2y-x+y=3
Hei kimi i te tauaro o x-y, kimihia te tauaro o ia taurangi.
x+2y+y=3
Pahekotia te 2x me -x, ka x.
x+3y=3
Pahekotia te 2y me y, ka 3y.
x+y-2x+2y=1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-y.
-x+y+2y=1
Pahekotia te x me -2x, ka -x.
-x+3y=1
Pahekotia te y me 2y, ka 3y.
x+3y=3,-x+3y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+x+3y-3y=3-1
Me tango -x+3y=1 mai i x+3y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+x=3-1
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=3-1
Tāpiri x ki te x.
2x=2
Tāpiri 3 ki te -1.
x=1
Whakawehea ngā taha e rua ki te 2.
-1+3y=1
Whakaurua te 1 mō x ki -x+3y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y=2
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x=1,y=\frac{2}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}