\left\{ \begin{array} { l } { 2 ( x + 3 ) = 3 ( y + 1 ) + 1 } \\ { 3 ( x - y - 1 ) = 2 ( x - 2 ) } \end{array} \right.
Whakaoti mō x, y
x=-1
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+6=3\left(y+1\right)+1
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
2x+6=3y+3+1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+1.
2x+6=3y+4
Tāpirihia te 3 ki te 1, ka 4.
2x+6-3y=4
Tangohia te 3y mai i ngā taha e rua.
2x-3y=4-6
Tangohia te 6 mai i ngā taha e rua.
2x-3y=-2
Tangohia te 6 i te 4, ka -2.
3x-3y-3=2\left(x-2\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-y-1.
3x-3y-3=2x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
3x-3y-3-2x=-4
Tangohia te 2x mai i ngā taha e rua.
x-3y-3=-4
Pahekotia te 3x me -2x, ka x.
x-3y=-4+3
Me tāpiri te 3 ki ngā taha e rua.
x-3y=-1
Tāpirihia te -4 ki te 3, ka -1.
2x-3y=-2,x-3y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y-2
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-2\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-1
Whakareatia \frac{1}{2} ki te 3y-2.
\frac{3}{2}y-1-3y=-1
Whakakapia te \frac{3y}{2}-1 mō te x ki tērā atu whārite, x-3y=-1.
-\frac{3}{2}y-1=-1
Tāpiri \frac{3y}{2} ki te -3y.
-\frac{3}{2}y=0
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-1
Whakaurua te 0 mō y ki x=\frac{3}{2}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1,y=0
Kua oti te pūnaha te whakatau.
2x+6=3\left(y+1\right)+1
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
2x+6=3y+3+1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+1.
2x+6=3y+4
Tāpirihia te 3 ki te 1, ka 4.
2x+6-3y=4
Tangohia te 3y mai i ngā taha e rua.
2x-3y=4-6
Tangohia te 6 mai i ngā taha e rua.
2x-3y=-2
Tangohia te 6 i te 4, ka -2.
3x-3y-3=2\left(x-2\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-y-1.
3x-3y-3=2x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
3x-3y-3-2x=-4
Tangohia te 2x mai i ngā taha e rua.
x-3y-3=-4
Pahekotia te 3x me -2x, ka x.
x-3y=-4+3
Me tāpiri te 3 ki ngā taha e rua.
x-3y=-1
Tāpirihia te -4 ki te 3, ka -1.
2x-3y=-2,x-3y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\1&-3\end{matrix}\right))\left(\begin{matrix}2&-3\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-3\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-3\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-3\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-3\right)}&-\frac{-3}{2\left(-3\right)-\left(-3\right)}\\-\frac{1}{2\left(-3\right)-\left(-3\right)}&\frac{2}{2\left(-3\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2-\left(-1\right)\\\frac{1}{3}\left(-2\right)-\frac{2}{3}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=0
Tangohia ngā huānga poukapa x me y.
2x+6=3\left(y+1\right)+1
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
2x+6=3y+3+1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+1.
2x+6=3y+4
Tāpirihia te 3 ki te 1, ka 4.
2x+6-3y=4
Tangohia te 3y mai i ngā taha e rua.
2x-3y=4-6
Tangohia te 6 mai i ngā taha e rua.
2x-3y=-2
Tangohia te 6 i te 4, ka -2.
3x-3y-3=2\left(x-2\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-y-1.
3x-3y-3=2x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
3x-3y-3-2x=-4
Tangohia te 2x mai i ngā taha e rua.
x-3y-3=-4
Pahekotia te 3x me -2x, ka x.
x-3y=-4+3
Me tāpiri te 3 ki ngā taha e rua.
x-3y=-1
Tāpirihia te -4 ki te 3, ka -1.
2x-3y=-2,x-3y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-x-3y+3y=-2+1
Me tango x-3y=-1 mai i 2x-3y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-x=-2+1
Tāpiri -3y ki te 3y. Ka whakakore atu ngā kupu -3y me 3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=-2+1
Tāpiri 2x ki te -x.
x=-1
Tāpiri -2 ki te 1.
-1-3y=-1
Whakaurua te -1 mō x ki x-3y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-3y=0
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=-1,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}