\left\{ \begin{array} { l } { 2 ( x + 2 ) - 3 ( y - 1 ) = 13 } \\ { 3 ( x + 2 ) + 5 ( y - 1 ) = 30.9 } \end{array} \right.
Whakaoti mō x, y
x=6.3
y=2.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x+2\right)-3\left(y-1\right)=13,3\left(x+2\right)+5\left(y-1\right)=30.9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2\left(x+2\right)-3\left(y-1\right)=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+4-3\left(y-1\right)=13
Whakareatia 2 ki te x+2.
2x+4-3y+3=13
Whakareatia -3 ki te y-1.
2x-3y+7=13
Tāpiri 4 ki te 3.
2x-3y=6
Me tango 7 mai i ngā taha e rua o te whārite.
2x=3y+6
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+3
Whakareatia \frac{1}{2} ki te 6+3y.
3\left(\frac{3}{2}y+3+2\right)+5\left(y-1\right)=30.9
Whakakapia te \frac{3y}{2}+3 mō te x ki tērā atu whārite, 3\left(x+2\right)+5\left(y-1\right)=30.9.
3\left(\frac{3}{2}y+5\right)+5\left(y-1\right)=30.9
Tāpiri 3 ki te 2.
\frac{9}{2}y+15+5\left(y-1\right)=30.9
Whakareatia 3 ki te \frac{3y}{2}+5.
\frac{9}{2}y+15+5y-5=30.9
Whakareatia 5 ki te y-1.
\frac{19}{2}y+15-5=30.9
Tāpiri \frac{9y}{2} ki te 5y.
\frac{19}{2}y+10=30.9
Tāpiri 15 ki te -5.
\frac{19}{2}y=20.9
Me tango 10 mai i ngā taha e rua o te whārite.
y=\frac{11}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\times \frac{11}{5}+3
Whakaurua te \frac{11}{5} mō y ki x=\frac{3}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{33}{10}+3
Whakareatia \frac{3}{2} ki te \frac{11}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{63}{10}
Tāpiri 3 ki te \frac{33}{10}.
x=\frac{63}{10},y=\frac{11}{5}
Kua oti te pūnaha te whakatau.
2\left(x+2\right)-3\left(y-1\right)=13,3\left(x+2\right)+5\left(y-1\right)=30.9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
2\left(x+2\right)-3\left(y-1\right)=13
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
2x+4-3\left(y-1\right)=13
Whakareatia 2 ki te x+2.
2x+4-3y+3=13
Whakareatia -3 ki te y-1.
2x-3y+7=13
Tāpiri 4 ki te 3.
2x-3y=6
Me tango 7 mai i ngā taha e rua o te whārite.
3\left(x+2\right)+5\left(y-1\right)=30.9
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
3x+6+5\left(y-1\right)=30.9
Whakareatia 3 ki te x+2.
3x+6+5y-5=30.9
Whakareatia 5 ki te y-1.
3x+5y+1=30.9
Tāpiri 6 ki te -5.
3x+5y=29.9
Me tango 1 mai i ngā taha e rua o te whārite.
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\29.9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}6\\29.9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}6\\29.9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}6\\29.9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 3\right)}&-\frac{-3}{2\times 5-\left(-3\times 3\right)}\\-\frac{3}{2\times 5-\left(-3\times 3\right)}&\frac{2}{2\times 5-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}6\\29.9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}6\\29.9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 6+\frac{3}{19}\times 29.9\\-\frac{3}{19}\times 6+\frac{2}{19}\times 29.9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{10}\\\frac{11}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{63}{10},y=\frac{11}{5}
Tangohia ngā huānga poukapa x me y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}