Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(2x-3\right)+3\left(y+4\right)=7,4\left(x+2\right)-5\left(-y+2\right)=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2\left(2x-3\right)+3\left(y+4\right)=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x-6+3\left(y+4\right)=7
Whakareatia 2 ki te 2x-3.
4x-6+3y+12=7
Whakareatia 3 ki te y+4.
4x+3y+6=7
Tāpiri -6 ki te 12.
4x+3y=1
Me tango 6 mai i ngā taha e rua o te whārite.
4x=-3y+1
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+1\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{1}{4}
Whakareatia \frac{1}{4} ki te -3y+1.
4\left(-\frac{3}{4}y+\frac{1}{4}+2\right)-5\left(-y+2\right)=-3
Whakakapia te \frac{-3y+1}{4} mō te x ki tērā atu whārite, 4\left(x+2\right)-5\left(-y+2\right)=-3.
4\left(-\frac{3}{4}y+\frac{9}{4}\right)-5\left(-y+2\right)=-3
Tāpiri \frac{1}{4} ki te 2.
-3y+9-5\left(-y+2\right)=-3
Whakareatia 4 ki te \frac{-3y+9}{4}.
-3y+9+5y-10=-3
Whakareatia -5 ki te -y+2.
2y+9-10=-3
Tāpiri -3y ki te 5y.
2y-1=-3
Tāpiri 9 ki te -10.
2y=-2
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{4}\left(-1\right)+\frac{1}{4}
Whakaurua te -1 mō y ki x=-\frac{3}{4}y+\frac{1}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+1}{4}
Whakareatia -\frac{3}{4} ki te -1.
x=1
Tāpiri \frac{1}{4} ki te \frac{3}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
2\left(2x-3\right)+3\left(y+4\right)=7,4\left(x+2\right)-5\left(-y+2\right)=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
2\left(2x-3\right)+3\left(y+4\right)=7
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
4x-6+3\left(y+4\right)=7
Whakareatia 2 ki te 2x-3.
4x-6+3y+12=7
Whakareatia 3 ki te y+4.
4x+3y+6=7
Tāpiri -6 ki te 12.
4x+3y=1
Me tango 6 mai i ngā taha e rua o te whārite.
4\left(x+2\right)-5\left(-y+2\right)=-3
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
4x+8-5\left(-y+2\right)=-3
Whakareatia 4 ki te x+2.
4x+8+5y-10=-3
Whakareatia -5 ki te -y+2.
4x+5y-2=-3
Tāpiri 8 ki te -10.
4x+5y=-1
Me tāpiri 2 ki ngā taha e rua o te whārite.
\left(\begin{matrix}4&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}4&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 4}&-\frac{3}{4\times 5-3\times 4}\\-\frac{4}{4\times 5-3\times 4}&\frac{4}{4\times 5-3\times 4}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}&-\frac{3}{8}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}-\frac{3}{8}\left(-1\right)\\-\frac{1}{2}+\frac{1}{2}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.