\left\{ \begin{array} { l } { 2 = 16 a - 8 b + 4 c } \\ { 0 = - 32 a + 12 b - 45 } \\ { 2 = - 80 a + 16 b } \end{array} \right.
Whakaoti mō a, b, c
a = \frac{87}{56} = 1\frac{31}{56} \approx 1.553571429
b = \frac{221}{28} = 7\frac{25}{28} \approx 7.892857143
c = \frac{141}{14} = 10\frac{1}{14} \approx 10.071428571
Tohaina
Kua tāruatia ki te papatopenga
a=\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c
Me whakaoti te 2=16a-8b+4c mō a.
0=-32\left(\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c\right)+12b-45 2=-80\left(\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c\right)+16b
Whakakapia te \frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c mō te a i te whārite tuarua me te tuatoru.
b=-\frac{49}{4}+2c c=\frac{3}{5}+\frac{6}{5}b
Me whakaoti ēnei whārite mō b me c takitahi.
c=\frac{3}{5}+\frac{6}{5}\left(-\frac{49}{4}+2c\right)
Whakakapia te -\frac{49}{4}+2c mō te b i te whārite c=\frac{3}{5}+\frac{6}{5}b.
c=\frac{141}{14}
Me whakaoti te c=\frac{3}{5}+\frac{6}{5}\left(-\frac{49}{4}+2c\right) mō c.
b=-\frac{49}{4}+2\times \frac{141}{14}
Whakakapia te \frac{141}{14} mō te c i te whārite b=-\frac{49}{4}+2c.
b=\frac{221}{28}
Tātaitia te b i te b=-\frac{49}{4}+2\times \frac{141}{14}.
a=\frac{1}{8}+\frac{1}{2}\times \frac{221}{28}-\frac{1}{4}\times \frac{141}{14}
Whakakapia te \frac{221}{28} mō te b me te \frac{141}{14} mō c i te whārite a=\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c.
a=\frac{87}{56}
Tātaitia te a i te a=\frac{1}{8}+\frac{1}{2}\times \frac{221}{28}-\frac{1}{4}\times \frac{141}{14}.
a=\frac{87}{56} b=\frac{221}{28} c=\frac{141}{14}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}