Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b, c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a=\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c
Me whakaoti te 2=16a-8b+4c mō a.
0=-32\left(\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c\right)+12b-45 2=-80\left(\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c\right)+16b
Whakakapia te \frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c mō te a i te whārite tuarua me te tuatoru.
b=-\frac{49}{4}+2c c=\frac{3}{5}+\frac{6}{5}b
Me whakaoti ēnei whārite mō b me c takitahi.
c=\frac{3}{5}+\frac{6}{5}\left(-\frac{49}{4}+2c\right)
Whakakapia te -\frac{49}{4}+2c mō te b i te whārite c=\frac{3}{5}+\frac{6}{5}b.
c=\frac{141}{14}
Me whakaoti te c=\frac{3}{5}+\frac{6}{5}\left(-\frac{49}{4}+2c\right) mō c.
b=-\frac{49}{4}+2\times \frac{141}{14}
Whakakapia te \frac{141}{14} mō te c i te whārite b=-\frac{49}{4}+2c.
b=\frac{221}{28}
Tātaitia te b i te b=-\frac{49}{4}+2\times \frac{141}{14}.
a=\frac{1}{8}+\frac{1}{2}\times \frac{221}{28}-\frac{1}{4}\times \frac{141}{14}
Whakakapia te \frac{221}{28} mō te b me te \frac{141}{14} mō c i te whārite a=\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c.
a=\frac{87}{56}
Tātaitia te a i te a=\frac{1}{8}+\frac{1}{2}\times \frac{221}{28}-\frac{1}{4}\times \frac{141}{14}.
a=\frac{87}{56} b=\frac{221}{28} c=\frac{141}{14}
Kua oti te pūnaha te whakatau.