\left\{ \begin{array} { l } { 16 m + 50 n = 55 } \\ { 2 m + 4 n = 5 } \end{array} \right.
Whakaoti mō m, n
m=\frac{5}{6}\approx 0.833333333
n=\frac{5}{6}\approx 0.833333333
Tohaina
Kua tāruatia ki te papatopenga
16m+50n=55,2m+4n=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
16m+50n=55
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
16m=-50n+55
Me tango 50n mai i ngā taha e rua o te whārite.
m=\frac{1}{16}\left(-50n+55\right)
Whakawehea ngā taha e rua ki te 16.
m=-\frac{25}{8}n+\frac{55}{16}
Whakareatia \frac{1}{16} ki te -50n+55.
2\left(-\frac{25}{8}n+\frac{55}{16}\right)+4n=5
Whakakapia te -\frac{25n}{8}+\frac{55}{16} mō te m ki tērā atu whārite, 2m+4n=5.
-\frac{25}{4}n+\frac{55}{8}+4n=5
Whakareatia 2 ki te -\frac{25n}{8}+\frac{55}{16}.
-\frac{9}{4}n+\frac{55}{8}=5
Tāpiri -\frac{25n}{4} ki te 4n.
-\frac{9}{4}n=-\frac{15}{8}
Me tango \frac{55}{8} mai i ngā taha e rua o te whārite.
n=\frac{5}{6}
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=-\frac{25}{8}\times \frac{5}{6}+\frac{55}{16}
Whakaurua te \frac{5}{6} mō n ki m=-\frac{25}{8}n+\frac{55}{16}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=-\frac{125}{48}+\frac{55}{16}
Whakareatia -\frac{25}{8} ki te \frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{5}{6}
Tāpiri \frac{55}{16} ki te -\frac{125}{48} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{5}{6},n=\frac{5}{6}
Kua oti te pūnaha te whakatau.
16m+50n=55,2m+4n=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}16&50\\2&4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}55\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}16&50\\2&4\end{matrix}\right))\left(\begin{matrix}16&50\\2&4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}16&50\\2&4\end{matrix}\right))\left(\begin{matrix}55\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}16&50\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}16&50\\2&4\end{matrix}\right))\left(\begin{matrix}55\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}16&50\\2&4\end{matrix}\right))\left(\begin{matrix}55\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{16\times 4-50\times 2}&-\frac{50}{16\times 4-50\times 2}\\-\frac{2}{16\times 4-50\times 2}&\frac{16}{16\times 4-50\times 2}\end{matrix}\right)\left(\begin{matrix}55\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}&\frac{25}{18}\\\frac{1}{18}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}55\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\times 55+\frac{25}{18}\times 5\\\frac{1}{18}\times 55-\frac{4}{9}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\\frac{5}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{5}{6},n=\frac{5}{6}
Tangohia ngā huānga poukapa m me n.
16m+50n=55,2m+4n=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 16m+2\times 50n=2\times 55,16\times 2m+16\times 4n=16\times 5
Kia ōrite ai a 16m me 2m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 16.
32m+100n=110,32m+64n=80
Whakarūnātia.
32m-32m+100n-64n=110-80
Me tango 32m+64n=80 mai i 32m+100n=110 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
100n-64n=110-80
Tāpiri 32m ki te -32m. Ka whakakore atu ngā kupu 32m me -32m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
36n=110-80
Tāpiri 100n ki te -64n.
36n=30
Tāpiri 110 ki te -80.
n=\frac{5}{6}
Whakawehea ngā taha e rua ki te 36.
2m+4\times \frac{5}{6}=5
Whakaurua te \frac{5}{6} mō n ki 2m+4n=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
2m+\frac{10}{3}=5
Whakareatia 4 ki te \frac{5}{6}.
2m=\frac{5}{3}
Me tango \frac{10}{3} mai i ngā taha e rua o te whārite.
m=\frac{5}{6}
Whakawehea ngā taha e rua ki te 2.
m=\frac{5}{6},n=\frac{5}{6}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}