\left\{ \begin{array} { l } { 150 = \frac { 9 } { 4 } a + \frac { 3 } { 2 } b + c } \\ { 45 = 25 a + 5 b + c } \\ { \frac { 225 } { 2 } = 4 a + 2 b + c } \end{array} \right.
Whakaoti mō a, b, c
a=15
b = -\frac{255}{2} = -127\frac{1}{2} = -127.5
c = \frac{615}{2} = 307\frac{1}{2} = 307.5
Tohaina
Kua tāruatia ki te papatopenga
c=150-\frac{9}{4}a-\frac{3}{2}b
Me whakaoti te 150=\frac{9}{4}a+\frac{3}{2}b+c mō c.
45=25a+5b+150-\frac{9}{4}a-\frac{3}{2}b \frac{225}{2}=4a+2b+150-\frac{9}{4}a-\frac{3}{2}b
Whakakapia te 150-\frac{9}{4}a-\frac{3}{2}b mō te c i te whārite tuarua me te tuatoru.
b=-30-\frac{13}{2}a a=-\frac{150}{7}-\frac{2}{7}b
Me whakaoti ēnei whārite mō b me a takitahi.
a=-\frac{150}{7}-\frac{2}{7}\left(-30-\frac{13}{2}a\right)
Whakakapia te -30-\frac{13}{2}a mō te b i te whārite a=-\frac{150}{7}-\frac{2}{7}b.
a=15
Me whakaoti te a=-\frac{150}{7}-\frac{2}{7}\left(-30-\frac{13}{2}a\right) mō a.
b=-30-\frac{13}{2}\times 15
Whakakapia te 15 mō te a i te whārite b=-30-\frac{13}{2}a.
b=-\frac{255}{2}
Tātaitia te b i te b=-30-\frac{13}{2}\times 15.
c=150-\frac{9}{4}\times 15-\frac{3}{2}\left(-\frac{255}{2}\right)
Whakakapia te -\frac{255}{2} mō te b me te 15 mō a i te whārite c=150-\frac{9}{4}a-\frac{3}{2}b.
c=\frac{615}{2}
Tātaitia te c i te c=150-\frac{9}{4}\times 15-\frac{3}{2}\left(-\frac{255}{2}\right).
a=15 b=-\frac{255}{2} c=\frac{615}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}