\left\{ \begin{array} { l } { 15 x + 12 y = 1950 } \\ { 7 x + 16 y = 1950 } \end{array} \right.
Whakaoti mō x, y
x=50
y=100
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x+12y=1950,7x+16y=1950
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
15x+12y=1950
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
15x=-12y+1950
Me tango 12y mai i ngā taha e rua o te whārite.
x=\frac{1}{15}\left(-12y+1950\right)
Whakawehea ngā taha e rua ki te 15.
x=-\frac{4}{5}y+130
Whakareatia \frac{1}{15} ki te -12y+1950.
7\left(-\frac{4}{5}y+130\right)+16y=1950
Whakakapia te -\frac{4y}{5}+130 mō te x ki tērā atu whārite, 7x+16y=1950.
-\frac{28}{5}y+910+16y=1950
Whakareatia 7 ki te -\frac{4y}{5}+130.
\frac{52}{5}y+910=1950
Tāpiri -\frac{28y}{5} ki te 16y.
\frac{52}{5}y=1040
Me tango 910 mai i ngā taha e rua o te whārite.
y=100
Whakawehea ngā taha e rua o te whārite ki te \frac{52}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{5}\times 100+130
Whakaurua te 100 mō y ki x=-\frac{4}{5}y+130. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-80+130
Whakareatia -\frac{4}{5} ki te 100.
x=50
Tāpiri 130 ki te -80.
x=50,y=100
Kua oti te pūnaha te whakatau.
15x+12y=1950,7x+16y=1950
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}15&12\\7&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1950\\1950\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}15&12\\7&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}1950\\1950\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}15&12\\7&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}1950\\1950\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}1950\\1950\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{15\times 16-12\times 7}&-\frac{12}{15\times 16-12\times 7}\\-\frac{7}{15\times 16-12\times 7}&\frac{15}{15\times 16-12\times 7}\end{matrix}\right)\left(\begin{matrix}1950\\1950\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}&-\frac{1}{13}\\-\frac{7}{156}&\frac{5}{52}\end{matrix}\right)\left(\begin{matrix}1950\\1950\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}\times 1950-\frac{1}{13}\times 1950\\-\frac{7}{156}\times 1950+\frac{5}{52}\times 1950\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\100\end{matrix}\right)
Mahia ngā tātaitanga.
x=50,y=100
Tangohia ngā huānga poukapa x me y.
15x+12y=1950,7x+16y=1950
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 15x+7\times 12y=7\times 1950,15\times 7x+15\times 16y=15\times 1950
Kia ōrite ai a 15x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 15.
105x+84y=13650,105x+240y=29250
Whakarūnātia.
105x-105x+84y-240y=13650-29250
Me tango 105x+240y=29250 mai i 105x+84y=13650 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
84y-240y=13650-29250
Tāpiri 105x ki te -105x. Ka whakakore atu ngā kupu 105x me -105x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-156y=13650-29250
Tāpiri 84y ki te -240y.
-156y=-15600
Tāpiri 13650 ki te -29250.
y=100
Whakawehea ngā taha e rua ki te -156.
7x+16\times 100=1950
Whakaurua te 100 mō y ki 7x+16y=1950. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+1600=1950
Whakareatia 16 ki te 100.
7x=350
Me tango 1600 mai i ngā taha e rua o te whārite.
x=50
Whakawehea ngā taha e rua ki te 7.
x=50,y=100
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}