\left\{ \begin{array} { l } { 14 x - 3 y = - 63 } \\ { 7 x + 2 y = - 7 } \end{array} \right.
Whakaoti mō x, y
x=-3
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
14x-3y=-63,7x+2y=-7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
14x-3y=-63
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
14x=3y-63
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{14}\left(3y-63\right)
Whakawehea ngā taha e rua ki te 14.
x=\frac{3}{14}y-\frac{9}{2}
Whakareatia \frac{1}{14} ki te -63+3y.
7\left(\frac{3}{14}y-\frac{9}{2}\right)+2y=-7
Whakakapia te \frac{3y}{14}-\frac{9}{2} mō te x ki tērā atu whārite, 7x+2y=-7.
\frac{3}{2}y-\frac{63}{2}+2y=-7
Whakareatia 7 ki te \frac{3y}{14}-\frac{9}{2}.
\frac{7}{2}y-\frac{63}{2}=-7
Tāpiri \frac{3y}{2} ki te 2y.
\frac{7}{2}y=\frac{49}{2}
Me tāpiri \frac{63}{2} ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{14}\times 7-\frac{9}{2}
Whakaurua te 7 mō y ki x=\frac{3}{14}y-\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3-9}{2}
Whakareatia \frac{3}{14} ki te 7.
x=-3
Tāpiri -\frac{9}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=7
Kua oti te pūnaha te whakatau.
14x-3y=-63,7x+2y=-7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-63\\-7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}14&-3\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{14\times 2-\left(-3\times 7\right)}&-\frac{-3}{14\times 2-\left(-3\times 7\right)}\\-\frac{7}{14\times 2-\left(-3\times 7\right)}&\frac{14}{14\times 2-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-63\\-7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{49}&\frac{3}{49}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-63\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{49}\left(-63\right)+\frac{3}{49}\left(-7\right)\\-\frac{1}{7}\left(-63\right)+\frac{2}{7}\left(-7\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=7
Tangohia ngā huānga poukapa x me y.
14x-3y=-63,7x+2y=-7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 14x+7\left(-3\right)y=7\left(-63\right),14\times 7x+14\times 2y=14\left(-7\right)
Kia ōrite ai a 14x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 14.
98x-21y=-441,98x+28y=-98
Whakarūnātia.
98x-98x-21y-28y=-441+98
Me tango 98x+28y=-98 mai i 98x-21y=-441 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-21y-28y=-441+98
Tāpiri 98x ki te -98x. Ka whakakore atu ngā kupu 98x me -98x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-49y=-441+98
Tāpiri -21y ki te -28y.
-49y=-343
Tāpiri -441 ki te 98.
y=7
Whakawehea ngā taha e rua ki te -49.
7x+2\times 7=-7
Whakaurua te 7 mō y ki 7x+2y=-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+14=-7
Whakareatia 2 ki te 7.
7x=-21
Me tango 14 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 7.
x=-3,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}