Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

125x+110y=6100,x+y=50
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
125x+110y=6100
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
125x=-110y+6100
Me tango 110y mai i ngā taha e rua o te whārite.
x=\frac{1}{125}\left(-110y+6100\right)
Whakawehea ngā taha e rua ki te 125.
x=-\frac{22}{25}y+\frac{244}{5}
Whakareatia \frac{1}{125} ki te -110y+6100.
-\frac{22}{25}y+\frac{244}{5}+y=50
Whakakapia te -\frac{22y}{25}+\frac{244}{5} mō te x ki tērā atu whārite, x+y=50.
\frac{3}{25}y+\frac{244}{5}=50
Tāpiri -\frac{22y}{25} ki te y.
\frac{3}{25}y=\frac{6}{5}
Me tango \frac{244}{5} mai i ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{25}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{22}{25}\times 10+\frac{244}{5}
Whakaurua te 10 mō y ki x=-\frac{22}{25}y+\frac{244}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-44+244}{5}
Whakareatia -\frac{22}{25} ki te 10.
x=40
Tāpiri \frac{244}{5} ki te -\frac{44}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=40,y=10
Kua oti te pūnaha te whakatau.
125x+110y=6100,x+y=50
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6100\\50\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}125&110\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{125-110}&-\frac{110}{125-110}\\-\frac{1}{125-110}&\frac{125}{125-110}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&-\frac{22}{3}\\-\frac{1}{15}&\frac{25}{3}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 6100-\frac{22}{3}\times 50\\-\frac{1}{15}\times 6100+\frac{25}{3}\times 50\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=40,y=10
Tangohia ngā huānga poukapa x me y.
125x+110y=6100,x+y=50
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
125x+110y=6100,125x+125y=125\times 50
Kia ōrite ai a 125x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 125.
125x+110y=6100,125x+125y=6250
Whakarūnātia.
125x-125x+110y-125y=6100-6250
Me tango 125x+125y=6250 mai i 125x+110y=6100 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
110y-125y=6100-6250
Tāpiri 125x ki te -125x. Ka whakakore atu ngā kupu 125x me -125x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15y=6100-6250
Tāpiri 110y ki te -125y.
-15y=-150
Tāpiri 6100 ki te -6250.
y=10
Whakawehea ngā taha e rua ki te -15.
x+10=50
Whakaurua te 10 mō y ki x+y=50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=40
Me tango 10 mai i ngā taha e rua o te whārite.
x=40,y=10
Kua oti te pūnaha te whakatau.