Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=12
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6a+b=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=12,6a+b=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+12
Me tango b mai i ngā taha e rua o te whārite.
6\left(-b+12\right)+b=2
Whakakapia te -b+12 mō te a ki tērā atu whārite, 6a+b=2.
-6b+72+b=2
Whakareatia 6 ki te -b+12.
-5b+72=2
Tāpiri -6b ki te b.
-5b=-70
Me tango 72 mai i ngā taha e rua o te whārite.
b=14
Whakawehea ngā taha e rua ki te -5.
a=-14+12
Whakaurua te 14 mō b ki a=-b+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-2
Tāpiri 12 ki te -14.
a=-2,b=14
Kua oti te pūnaha te whakatau.
a+b=12
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6a+b=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=12,6a+b=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\6&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}12\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}1&1\\6&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&1\end{matrix}\right))\left(\begin{matrix}12\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-6}&-\frac{1}{1-6}\\-\frac{6}{1-6}&\frac{1}{1-6}\end{matrix}\right)\left(\begin{matrix}12\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{6}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 12+\frac{1}{5}\times 2\\\frac{6}{5}\times 12-\frac{1}{5}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2\\14\end{matrix}\right)
Mahia ngā tātaitanga.
a=-2,b=14
Tangohia ngā huānga poukapa a me b.
a+b=12
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6a+b=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=12,6a+b=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-6a+b-b=12-2
Me tango 6a+b=2 mai i a+b=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
a-6a=12-2
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5a=12-2
Tāpiri a ki te -6a.
-5a=10
Tāpiri 12 ki te -2.
a=-2
Whakawehea ngā taha e rua ki te -5.
6\left(-2\right)+b=2
Whakaurua te -2 mō a ki 6a+b=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
-12+b=2
Whakareatia 6 ki te -2.
b=14
Me tāpiri 12 ki ngā taha e rua o te whārite.
a=-2,b=14
Kua oti te pūnaha te whakatau.