Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11x+19y=25,19x+11y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
11x+19y=25
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
11x=-19y+25
Me tango 19y mai i ngā taha e rua o te whārite.
x=\frac{1}{11}\left(-19y+25\right)
Whakawehea ngā taha e rua ki te 11.
x=-\frac{19}{11}y+\frac{25}{11}
Whakareatia \frac{1}{11} ki te -19y+25.
19\left(-\frac{19}{11}y+\frac{25}{11}\right)+11y=15
Whakakapia te \frac{-19y+25}{11} mō te x ki tērā atu whārite, 19x+11y=15.
-\frac{361}{11}y+\frac{475}{11}+11y=15
Whakareatia 19 ki te \frac{-19y+25}{11}.
-\frac{240}{11}y+\frac{475}{11}=15
Tāpiri -\frac{361y}{11} ki te 11y.
-\frac{240}{11}y=-\frac{310}{11}
Me tango \frac{475}{11} mai i ngā taha e rua o te whārite.
y=\frac{31}{24}
Whakawehea ngā taha e rua o te whārite ki te -\frac{240}{11}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{19}{11}\times \frac{31}{24}+\frac{25}{11}
Whakaurua te \frac{31}{24} mō y ki x=-\frac{19}{11}y+\frac{25}{11}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{589}{264}+\frac{25}{11}
Whakareatia -\frac{19}{11} ki te \frac{31}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{24}
Tāpiri \frac{25}{11} ki te -\frac{589}{264} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{24},y=\frac{31}{24}
Kua oti te pūnaha te whakatau.
11x+19y=25,19x+11y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}11&19\\19&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}11&19\\19&11\end{matrix}\right))\left(\begin{matrix}11&19\\19&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&19\\19&11\end{matrix}\right))\left(\begin{matrix}25\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}11&19\\19&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&19\\19&11\end{matrix}\right))\left(\begin{matrix}25\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&19\\19&11\end{matrix}\right))\left(\begin{matrix}25\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{11\times 11-19\times 19}&-\frac{19}{11\times 11-19\times 19}\\-\frac{19}{11\times 11-19\times 19}&\frac{11}{11\times 11-19\times 19}\end{matrix}\right)\left(\begin{matrix}25\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{240}&\frac{19}{240}\\\frac{19}{240}&-\frac{11}{240}\end{matrix}\right)\left(\begin{matrix}25\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{240}\times 25+\frac{19}{240}\times 15\\\frac{19}{240}\times 25-\frac{11}{240}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}\\\frac{31}{24}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{24},y=\frac{31}{24}
Tangohia ngā huānga poukapa x me y.
11x+19y=25,19x+11y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
19\times 11x+19\times 19y=19\times 25,11\times 19x+11\times 11y=11\times 15
Kia ōrite ai a 11x me 19x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 19 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 11.
209x+361y=475,209x+121y=165
Whakarūnātia.
209x-209x+361y-121y=475-165
Me tango 209x+121y=165 mai i 209x+361y=475 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
361y-121y=475-165
Tāpiri 209x ki te -209x. Ka whakakore atu ngā kupu 209x me -209x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
240y=475-165
Tāpiri 361y ki te -121y.
240y=310
Tāpiri 475 ki te -165.
y=\frac{31}{24}
Whakawehea ngā taha e rua ki te 240.
19x+11\times \frac{31}{24}=15
Whakaurua te \frac{31}{24} mō y ki 19x+11y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
19x+\frac{341}{24}=15
Whakareatia 11 ki te \frac{31}{24}.
19x=\frac{19}{24}
Me tango \frac{341}{24} mai i ngā taha e rua o te whārite.
x=\frac{1}{24}
Whakawehea ngā taha e rua ki te 19.
x=\frac{1}{24},y=\frac{31}{24}
Kua oti te pūnaha te whakatau.