Tīpoka ki ngā ihirangi matua
Whakaoti mō a_1, a_2
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11a_{1}+8a_{2}=-8,8a_{1}+11a_{2}=-\frac{26}{5}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
11a_{1}+8a_{2}=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a_{1} mā te wehe i te a_{1} i te taha mauī o te tohu ōrite.
11a_{1}=-8a_{2}-8
Me tango 8a_{2} mai i ngā taha e rua o te whārite.
a_{1}=\frac{1}{11}\left(-8a_{2}-8\right)
Whakawehea ngā taha e rua ki te 11.
a_{1}=-\frac{8}{11}a_{2}-\frac{8}{11}
Whakareatia \frac{1}{11} ki te -8a_{2}-8.
8\left(-\frac{8}{11}a_{2}-\frac{8}{11}\right)+11a_{2}=-\frac{26}{5}
Whakakapia te \frac{-8a_{2}-8}{11} mō te a_{1} ki tērā atu whārite, 8a_{1}+11a_{2}=-\frac{26}{5}.
-\frac{64}{11}a_{2}-\frac{64}{11}+11a_{2}=-\frac{26}{5}
Whakareatia 8 ki te \frac{-8a_{2}-8}{11}.
\frac{57}{11}a_{2}-\frac{64}{11}=-\frac{26}{5}
Tāpiri -\frac{64a_{2}}{11} ki te 11a_{2}.
\frac{57}{11}a_{2}=\frac{34}{55}
Me tāpiri \frac{64}{11} ki ngā taha e rua o te whārite.
a_{2}=\frac{34}{285}
Whakawehea ngā taha e rua o te whārite ki te \frac{57}{11}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a_{1}=-\frac{8}{11}\times \frac{34}{285}-\frac{8}{11}
Whakaurua te \frac{34}{285} mō a_{2} ki a_{1}=-\frac{8}{11}a_{2}-\frac{8}{11}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a_{1} hāngai tonu.
a_{1}=-\frac{272}{3135}-\frac{8}{11}
Whakareatia -\frac{8}{11} ki te \frac{34}{285} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a_{1}=-\frac{232}{285}
Tāpiri -\frac{8}{11} ki te -\frac{272}{3135} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a_{1}=-\frac{232}{285},a_{2}=\frac{34}{285}
Kua oti te pūnaha te whakatau.
11a_{1}+8a_{2}=-8,8a_{1}+11a_{2}=-\frac{26}{5}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}11&8\\8&11\end{matrix}\right)\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}11&8\\8&11\end{matrix}\right)\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}11&8\\8&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}11&8\\8&11\end{matrix}\right))\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{11}{11\times 11-8\times 8}&-\frac{8}{11\times 11-8\times 8}\\-\frac{8}{11\times 11-8\times 8}&\frac{11}{11\times 11-8\times 8}\end{matrix}\right)\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{11}{57}&-\frac{8}{57}\\-\frac{8}{57}&\frac{11}{57}\end{matrix}\right)\left(\begin{matrix}-8\\-\frac{26}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{11}{57}\left(-8\right)-\frac{8}{57}\left(-\frac{26}{5}\right)\\-\frac{8}{57}\left(-8\right)+\frac{11}{57}\left(-\frac{26}{5}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a_{1}\\a_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{232}{285}\\\frac{34}{285}\end{matrix}\right)
Mahia ngā tātaitanga.
a_{1}=-\frac{232}{285},a_{2}=\frac{34}{285}
Tangohia ngā huānga poukapa a_{1} me a_{2}.
11a_{1}+8a_{2}=-8,8a_{1}+11a_{2}=-\frac{26}{5}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 11a_{1}+8\times 8a_{2}=8\left(-8\right),11\times 8a_{1}+11\times 11a_{2}=11\left(-\frac{26}{5}\right)
Kia ōrite ai a 11a_{1} me 8a_{1}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 11.
88a_{1}+64a_{2}=-64,88a_{1}+121a_{2}=-\frac{286}{5}
Whakarūnātia.
88a_{1}-88a_{1}+64a_{2}-121a_{2}=-64+\frac{286}{5}
Me tango 88a_{1}+121a_{2}=-\frac{286}{5} mai i 88a_{1}+64a_{2}=-64 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
64a_{2}-121a_{2}=-64+\frac{286}{5}
Tāpiri 88a_{1} ki te -88a_{1}. Ka whakakore atu ngā kupu 88a_{1} me -88a_{1}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-57a_{2}=-64+\frac{286}{5}
Tāpiri 64a_{2} ki te -121a_{2}.
-57a_{2}=-\frac{34}{5}
Tāpiri -64 ki te \frac{286}{5}.
a_{2}=\frac{34}{285}
Whakawehea ngā taha e rua ki te -57.
8a_{1}+11\times \frac{34}{285}=-\frac{26}{5}
Whakaurua te \frac{34}{285} mō a_{2} ki 8a_{1}+11a_{2}=-\frac{26}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a_{1} hāngai tonu.
8a_{1}+\frac{374}{285}=-\frac{26}{5}
Whakareatia 11 ki te \frac{34}{285}.
8a_{1}=-\frac{1856}{285}
Me tango \frac{374}{285} mai i ngā taha e rua o te whārite.
a_{1}=-\frac{232}{285}
Whakawehea ngā taha e rua ki te 8.
a_{1}=-\frac{232}{285},a_{2}=\frac{34}{285}
Kua oti te pūnaha te whakatau.