\left\{ \begin{array} { l } { 11 a + 55 d = 132 } \\ { 2 a + 13 d = 30 } \end{array} \right.
Whakaoti mō a, d
a=2
d=2
Tohaina
Kua tāruatia ki te papatopenga
11a+55d=132,2a+13d=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
11a+55d=132
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
11a=-55d+132
Me tango 55d mai i ngā taha e rua o te whārite.
a=\frac{1}{11}\left(-55d+132\right)
Whakawehea ngā taha e rua ki te 11.
a=-5d+12
Whakareatia \frac{1}{11} ki te -55d+132.
2\left(-5d+12\right)+13d=30
Whakakapia te -5d+12 mō te a ki tērā atu whārite, 2a+13d=30.
-10d+24+13d=30
Whakareatia 2 ki te -5d+12.
3d+24=30
Tāpiri -10d ki te 13d.
3d=6
Me tango 24 mai i ngā taha e rua o te whārite.
d=2
Whakawehea ngā taha e rua ki te 3.
a=-5\times 2+12
Whakaurua te 2 mō d ki a=-5d+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-10+12
Whakareatia -5 ki te 2.
a=2
Tāpiri 12 ki te -10.
a=2,d=2
Kua oti te pūnaha te whakatau.
11a+55d=132,2a+13d=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}11&55\\2&13\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}132\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}11&55\\2&13\end{matrix}\right))\left(\begin{matrix}11&55\\2&13\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}11&55\\2&13\end{matrix}\right))\left(\begin{matrix}132\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}11&55\\2&13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}11&55\\2&13\end{matrix}\right))\left(\begin{matrix}132\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}11&55\\2&13\end{matrix}\right))\left(\begin{matrix}132\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}\frac{13}{11\times 13-55\times 2}&-\frac{55}{11\times 13-55\times 2}\\-\frac{2}{11\times 13-55\times 2}&\frac{11}{11\times 13-55\times 2}\end{matrix}\right)\left(\begin{matrix}132\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}\frac{13}{33}&-\frac{5}{3}\\-\frac{2}{33}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}132\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}\frac{13}{33}\times 132-\frac{5}{3}\times 30\\-\frac{2}{33}\times 132+\frac{1}{3}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
a=2,d=2
Tangohia ngā huānga poukapa a me d.
11a+55d=132,2a+13d=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 11a+2\times 55d=2\times 132,11\times 2a+11\times 13d=11\times 30
Kia ōrite ai a 11a me 2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 11.
22a+110d=264,22a+143d=330
Whakarūnātia.
22a-22a+110d-143d=264-330
Me tango 22a+143d=330 mai i 22a+110d=264 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
110d-143d=264-330
Tāpiri 22a ki te -22a. Ka whakakore atu ngā kupu 22a me -22a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-33d=264-330
Tāpiri 110d ki te -143d.
-33d=-66
Tāpiri 264 ki te -330.
d=2
Whakawehea ngā taha e rua ki te -33.
2a+13\times 2=30
Whakaurua te 2 mō d ki 2a+13d=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a+26=30
Whakareatia 13 ki te 2.
2a=4
Me tango 26 mai i ngā taha e rua o te whārite.
a=2
Whakawehea ngā taha e rua ki te 2.
a=2,d=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}