\left\{ \begin{array} { l } { 10 x + y = 6 y + 5 } \\ { 10 y + x = ( 10 x + y ) + 27 } \end{array} \right.
Whakaoti mō x, y
x=4
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+y-6y=5
Whakaarohia te whārite tuatahi. Tangohia te 6y mai i ngā taha e rua.
10x-5y=5
Pahekotia te y me -6y, ka -5y.
10y+x-10x=y+27
Whakaarohia te whārite tuarua. Tangohia te 10x mai i ngā taha e rua.
10y-9x=y+27
Pahekotia te x me -10x, ka -9x.
10y-9x-y=27
Tangohia te y mai i ngā taha e rua.
9y-9x=27
Pahekotia te 10y me -y, ka 9y.
10x-5y=5,-9x+9y=27
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x-5y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=5y+5
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{10}\left(5y+5\right)
Whakawehea ngā taha e rua ki te 10.
x=\frac{1}{2}y+\frac{1}{2}
Whakareatia \frac{1}{10} ki te 5+5y.
-9\left(\frac{1}{2}y+\frac{1}{2}\right)+9y=27
Whakakapia te \frac{1+y}{2} mō te x ki tērā atu whārite, -9x+9y=27.
-\frac{9}{2}y-\frac{9}{2}+9y=27
Whakareatia -9 ki te \frac{1+y}{2}.
\frac{9}{2}y-\frac{9}{2}=27
Tāpiri -\frac{9y}{2} ki te 9y.
\frac{9}{2}y=\frac{63}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\times 7+\frac{1}{2}
Whakaurua te 7 mō y ki x=\frac{1}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7+1}{2}
Whakareatia \frac{1}{2} ki te 7.
x=4
Tāpiri \frac{1}{2} ki te \frac{7}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=7
Kua oti te pūnaha te whakatau.
10x+y-6y=5
Whakaarohia te whārite tuatahi. Tangohia te 6y mai i ngā taha e rua.
10x-5y=5
Pahekotia te y me -6y, ka -5y.
10y+x-10x=y+27
Whakaarohia te whārite tuarua. Tangohia te 10x mai i ngā taha e rua.
10y-9x=y+27
Pahekotia te x me -10x, ka -9x.
10y-9x-y=27
Tangohia te y mai i ngā taha e rua.
9y-9x=27
Pahekotia te 10y me -y, ka 9y.
10x-5y=5,-9x+9y=27
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&-5\\-9&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\27\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&-5\\-9&9\end{matrix}\right))\left(\begin{matrix}10&-5\\-9&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-5\\-9&9\end{matrix}\right))\left(\begin{matrix}5\\27\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&-5\\-9&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-5\\-9&9\end{matrix}\right))\left(\begin{matrix}5\\27\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-5\\-9&9\end{matrix}\right))\left(\begin{matrix}5\\27\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10\times 9-\left(-5\left(-9\right)\right)}&-\frac{-5}{10\times 9-\left(-5\left(-9\right)\right)}\\-\frac{-9}{10\times 9-\left(-5\left(-9\right)\right)}&\frac{10}{10\times 9-\left(-5\left(-9\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\27\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{9}\\\frac{1}{5}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}5\\27\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 5+\frac{1}{9}\times 27\\\frac{1}{5}\times 5+\frac{2}{9}\times 27\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=7
Tangohia ngā huānga poukapa x me y.
10x+y-6y=5
Whakaarohia te whārite tuatahi. Tangohia te 6y mai i ngā taha e rua.
10x-5y=5
Pahekotia te y me -6y, ka -5y.
10y+x-10x=y+27
Whakaarohia te whārite tuarua. Tangohia te 10x mai i ngā taha e rua.
10y-9x=y+27
Pahekotia te x me -10x, ka -9x.
10y-9x-y=27
Tangohia te y mai i ngā taha e rua.
9y-9x=27
Pahekotia te 10y me -y, ka 9y.
10x-5y=5,-9x+9y=27
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9\times 10x-9\left(-5\right)y=-9\times 5,10\left(-9\right)x+10\times 9y=10\times 27
Kia ōrite ai a 10x me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
-90x+45y=-45,-90x+90y=270
Whakarūnātia.
-90x+90x+45y-90y=-45-270
Me tango -90x+90y=270 mai i -90x+45y=-45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
45y-90y=-45-270
Tāpiri -90x ki te 90x. Ka whakakore atu ngā kupu -90x me 90x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-45y=-45-270
Tāpiri 45y ki te -90y.
-45y=-315
Tāpiri -45 ki te -270.
y=7
Whakawehea ngā taha e rua ki te -45.
-9x+9\times 7=27
Whakaurua te 7 mō y ki -9x+9y=27. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x+63=27
Whakareatia 9 ki te 7.
-9x=-36
Me tango 63 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -9.
x=4,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}