\left\{ \begin{array} { l } { 10 x + 3 y = 3360 } \\ { x + y = 420 } \end{array} \right.
Whakaoti mō x, y
x=300
y=120
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+3y=3360,x+y=420
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x+3y=3360
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=-3y+3360
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{10}\left(-3y+3360\right)
Whakawehea ngā taha e rua ki te 10.
x=-\frac{3}{10}y+336
Whakareatia \frac{1}{10} ki te -3y+3360.
-\frac{3}{10}y+336+y=420
Whakakapia te -\frac{3y}{10}+336 mō te x ki tērā atu whārite, x+y=420.
\frac{7}{10}y+336=420
Tāpiri -\frac{3y}{10} ki te y.
\frac{7}{10}y=84
Me tango 336 mai i ngā taha e rua o te whārite.
y=120
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{10}\times 120+336
Whakaurua te 120 mō y ki x=-\frac{3}{10}y+336. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-36+336
Whakareatia -\frac{3}{10} ki te 120.
x=300
Tāpiri 336 ki te -36.
x=300,y=120
Kua oti te pūnaha te whakatau.
10x+3y=3360,x+y=420
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3360\\420\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}10&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}3360\\420\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}3360\\420\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\1&1\end{matrix}\right))\left(\begin{matrix}3360\\420\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-3}&-\frac{3}{10-3}\\-\frac{1}{10-3}&\frac{10}{10-3}\end{matrix}\right)\left(\begin{matrix}3360\\420\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{3}{7}\\-\frac{1}{7}&\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}3360\\420\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 3360-\frac{3}{7}\times 420\\-\frac{1}{7}\times 3360+\frac{10}{7}\times 420\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\120\end{matrix}\right)
Mahia ngā tātaitanga.
x=300,y=120
Tangohia ngā huānga poukapa x me y.
10x+3y=3360,x+y=420
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10x+3y=3360,10x+10y=10\times 420
Kia ōrite ai a 10x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
10x+3y=3360,10x+10y=4200
Whakarūnātia.
10x-10x+3y-10y=3360-4200
Me tango 10x+10y=4200 mai i 10x+3y=3360 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-10y=3360-4200
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=3360-4200
Tāpiri 3y ki te -10y.
-7y=-840
Tāpiri 3360 ki te -4200.
y=120
Whakawehea ngā taha e rua ki te -7.
x+120=420
Whakaurua te 120 mō y ki x+y=420. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=300
Me tango 120 mai i ngā taha e rua o te whārite.
x=300,y=120
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}