Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10x+18y=-1,16x-9y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x+18y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=-18y-1
Me tango 18y mai i ngā taha e rua o te whārite.
x=\frac{1}{10}\left(-18y-1\right)
Whakawehea ngā taha e rua ki te 10.
x=-\frac{9}{5}y-\frac{1}{10}
Whakareatia \frac{1}{10} ki te -18y-1.
16\left(-\frac{9}{5}y-\frac{1}{10}\right)-9y=-5
Whakakapia te -\frac{9y}{5}-\frac{1}{10} mō te x ki tērā atu whārite, 16x-9y=-5.
-\frac{144}{5}y-\frac{8}{5}-9y=-5
Whakareatia 16 ki te -\frac{9y}{5}-\frac{1}{10}.
-\frac{189}{5}y-\frac{8}{5}=-5
Tāpiri -\frac{144y}{5} ki te -9y.
-\frac{189}{5}y=-\frac{17}{5}
Me tāpiri \frac{8}{5} ki ngā taha e rua o te whārite.
y=\frac{17}{189}
Whakawehea ngā taha e rua o te whārite ki te -\frac{189}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{9}{5}\times \frac{17}{189}-\frac{1}{10}
Whakaurua te \frac{17}{189} mō y ki x=-\frac{9}{5}y-\frac{1}{10}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{17}{105}-\frac{1}{10}
Whakareatia -\frac{9}{5} ki te \frac{17}{189} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{42}
Tāpiri -\frac{1}{10} ki te -\frac{17}{105} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{42},y=\frac{17}{189}
Kua oti te pūnaha te whakatau.
10x+18y=-1,16x-9y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&18\\16&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}10&18\\16&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&18\\16&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{10\left(-9\right)-18\times 16}&-\frac{18}{10\left(-9\right)-18\times 16}\\-\frac{16}{10\left(-9\right)-18\times 16}&\frac{10}{10\left(-9\right)-18\times 16}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{42}&\frac{1}{21}\\\frac{8}{189}&-\frac{5}{189}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{42}\left(-1\right)+\frac{1}{21}\left(-5\right)\\\frac{8}{189}\left(-1\right)-\frac{5}{189}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{42}\\\frac{17}{189}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{11}{42},y=\frac{17}{189}
Tangohia ngā huānga poukapa x me y.
10x+18y=-1,16x-9y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
16\times 10x+16\times 18y=16\left(-1\right),10\times 16x+10\left(-9\right)y=10\left(-5\right)
Kia ōrite ai a 10x me 16x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 16 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
160x+288y=-16,160x-90y=-50
Whakarūnātia.
160x-160x+288y+90y=-16+50
Me tango 160x-90y=-50 mai i 160x+288y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
288y+90y=-16+50
Tāpiri 160x ki te -160x. Ka whakakore atu ngā kupu 160x me -160x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
378y=-16+50
Tāpiri 288y ki te 90y.
378y=34
Tāpiri -16 ki te 50.
y=\frac{17}{189}
Whakawehea ngā taha e rua ki te 378.
16x-9\times \frac{17}{189}=-5
Whakaurua te \frac{17}{189} mō y ki 16x-9y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
16x-\frac{17}{21}=-5
Whakareatia -9 ki te \frac{17}{189}.
16x=-\frac{88}{21}
Me tāpiri \frac{17}{21} ki ngā taha e rua o te whārite.
x=-\frac{11}{42}
Whakawehea ngā taha e rua ki te 16.
x=-\frac{11}{42},y=\frac{17}{189}
Kua oti te pūnaha te whakatau.