\left\{ \begin{array} { l } { 10 x + 10 y = 9 } \\ { 5 x - 2 y = 1 } \end{array} \right.
Whakaoti mō x, y
x=\frac{2}{5}=0.4
y=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+10y=9,5x-2y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x+10y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=-10y+9
Me tango 10y mai i ngā taha e rua o te whārite.
x=\frac{1}{10}\left(-10y+9\right)
Whakawehea ngā taha e rua ki te 10.
x=-y+\frac{9}{10}
Whakareatia \frac{1}{10} ki te -10y+9.
5\left(-y+\frac{9}{10}\right)-2y=1
Whakakapia te -y+\frac{9}{10} mō te x ki tērā atu whārite, 5x-2y=1.
-5y+\frac{9}{2}-2y=1
Whakareatia 5 ki te -y+\frac{9}{10}.
-7y+\frac{9}{2}=1
Tāpiri -5y ki te -2y.
-7y=-\frac{7}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te -7.
x=-\frac{1}{2}+\frac{9}{10}
Whakaurua te \frac{1}{2} mō y ki x=-y+\frac{9}{10}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2}{5}
Tāpiri \frac{9}{10} ki te -\frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{2}{5},y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
10x+10y=9,5x-2y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&10\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&10\\5&-2\end{matrix}\right))\left(\begin{matrix}10&10\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&10\\5&-2\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&10\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&10\\5&-2\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&10\\5&-2\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{10\left(-2\right)-10\times 5}&-\frac{10}{10\left(-2\right)-10\times 5}\\-\frac{5}{10\left(-2\right)-10\times 5}&\frac{10}{10\left(-2\right)-10\times 5}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{35}&\frac{1}{7}\\\frac{1}{14}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{35}\times 9+\frac{1}{7}\\\frac{1}{14}\times 9-\frac{1}{7}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{2}{5},y=\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
10x+10y=9,5x-2y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 10x+5\times 10y=5\times 9,10\times 5x+10\left(-2\right)y=10
Kia ōrite ai a 10x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
50x+50y=45,50x-20y=10
Whakarūnātia.
50x-50x+50y+20y=45-10
Me tango 50x-20y=10 mai i 50x+50y=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
50y+20y=45-10
Tāpiri 50x ki te -50x. Ka whakakore atu ngā kupu 50x me -50x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
70y=45-10
Tāpiri 50y ki te 20y.
70y=35
Tāpiri 45 ki te -10.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te 70.
5x-2\times \frac{1}{2}=1
Whakaurua te \frac{1}{2} mō y ki 5x-2y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-1=1
Whakareatia -2 ki te \frac{1}{2}.
5x=2
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=\frac{2}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5},y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}