\left\{ \begin{array} { l } { 1.5 x - 35 y = - 5 } \\ { - 1.2 y + 2.5 y = 1 } \end{array} \right.
Whakaoti mō x, y
x = \frac{190}{13} = 14\frac{8}{13} \approx 14.615384615
y=\frac{10}{13}\approx 0.769230769
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.3y=1
Whakaarohia te whārite tuarua. Pahekotia te -1.2y me 2.5y, ka 1.3y.
y=\frac{1}{1.3}
Whakawehea ngā taha e rua ki te 1.3.
y=\frac{10}{13}
Whakarohaina te \frac{1}{1.3} mā te whakarea i te taurunga me te tauraro ki te 10.
1.5x-35\times \frac{10}{13}=-5
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
1.5x-\frac{350}{13}=-5
Whakareatia te -35 ki te \frac{10}{13}, ka -\frac{350}{13}.
1.5x=-5+\frac{350}{13}
Me tāpiri te \frac{350}{13} ki ngā taha e rua.
1.5x=\frac{285}{13}
Tāpirihia te -5 ki te \frac{350}{13}, ka \frac{285}{13}.
x=\frac{\frac{285}{13}}{1.5}
Whakawehea ngā taha e rua ki te 1.5.
x=\frac{285}{13\times 1.5}
Tuhia te \frac{\frac{285}{13}}{1.5} hei hautanga kotahi.
x=\frac{285}{19.5}
Whakareatia te 13 ki te 1.5, ka 19.5.
x=\frac{2850}{195}
Whakarohaina te \frac{285}{19.5} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{190}{13}
Whakahekea te hautanga \frac{2850}{195} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
x=\frac{190}{13} y=\frac{10}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}