Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1.5x-3.5y=-5,-1.2x+2.5y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
1.5x-3.5y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
1.5x=3.5y-5
Me tāpiri \frac{7y}{2} ki ngā taha e rua o te whārite.
x=\frac{2}{3}\left(3.5y-5\right)
Whakawehea ngā taha e rua o te whārite ki te 1.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{3}y-\frac{10}{3}
Whakareatia \frac{2}{3} ki te \frac{7y}{2}-5.
-1.2\left(\frac{7}{3}y-\frac{10}{3}\right)+2.5y=1
Whakakapia te \frac{7y-10}{3} mō te x ki tērā atu whārite, -1.2x+2.5y=1.
-2.8y+4+2.5y=1
Whakareatia -1.2 ki te \frac{7y-10}{3}.
-0.3y+4=1
Tāpiri -\frac{14y}{5} ki te \frac{5y}{2}.
-0.3y=-3
Me tango 4 mai i ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua o te whārite ki te -0.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{3}\times 10-\frac{10}{3}
Whakaurua te 10 mō y ki x=\frac{7}{3}y-\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{70-10}{3}
Whakareatia \frac{7}{3} ki te 10.
x=20
Tāpiri -\frac{10}{3} ki te \frac{70}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=20,y=10
Kua oti te pūnaha te whakatau.
1.5x-3.5y=-5,-1.2x+2.5y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2.5}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}&-\frac{-3.5}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}\\-\frac{-1.2}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}&\frac{1.5}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{9}&-\frac{70}{9}\\-\frac{8}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{9}\left(-5\right)-\frac{70}{9}\\-\frac{8}{3}\left(-5\right)-\frac{10}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=20,y=10
Tangohia ngā huānga poukapa x me y.
1.5x-3.5y=-5,-1.2x+2.5y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-1.2\times 1.5x-1.2\left(-3.5\right)y=-1.2\left(-5\right),1.5\left(-1.2\right)x+1.5\times 2.5y=1.5
Kia ōrite ai a \frac{3x}{2} me -\frac{6x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1.2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.5.
-1.8x+4.2y=6,-1.8x+3.75y=1.5
Whakarūnātia.
-1.8x+1.8x+4.2y-3.75y=6-1.5
Me tango -1.8x+3.75y=1.5 mai i -1.8x+4.2y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4.2y-3.75y=6-1.5
Tāpiri -\frac{9x}{5} ki te \frac{9x}{5}. Ka whakakore atu ngā kupu -\frac{9x}{5} me \frac{9x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.45y=6-1.5
Tāpiri \frac{21y}{5} ki te -\frac{15y}{4}.
0.45y=4.5
Tāpiri 6 ki te -1.5.
y=10
Whakawehea ngā taha e rua o te whārite ki te 0.45, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-1.2x+2.5\times 10=1
Whakaurua te 10 mō y ki -1.2x+2.5y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-1.2x+25=1
Whakareatia 2.5 ki te 10.
-1.2x=-24
Me tango 25 mai i ngā taha e rua o te whārite.
x=20
Whakawehea ngā taha e rua o te whārite ki te -1.2, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=20,y=10
Kua oti te pūnaha te whakatau.