\left\{ \begin{array} { l } { 1 - m + n = 0 } \\ { 4 + 2 m + n = 0 } \end{array} \right.
Whakaoti mō m, n
m=-1
n=-2
Tohaina
Kua tāruatia ki te papatopenga
-m+n+1=0,2m+n+4=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-m+n+1=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
-m+n=-1
Me tango 1 mai i ngā taha e rua o te whārite.
-m=-n-1
Me tango n mai i ngā taha e rua o te whārite.
m=-\left(-n-1\right)
Whakawehea ngā taha e rua ki te -1.
m=n+1
Whakareatia -1 ki te -n-1.
2\left(n+1\right)+n+4=0
Whakakapia te n+1 mō te m ki tērā atu whārite, 2m+n+4=0.
2n+2+n+4=0
Whakareatia 2 ki te n+1.
3n+2+4=0
Tāpiri 2n ki te n.
3n+6=0
Tāpiri 2 ki te 4.
3n=-6
Me tango 6 mai i ngā taha e rua o te whārite.
n=-2
Whakawehea ngā taha e rua ki te 3.
m=-2+1
Whakaurua te -2 mō n ki m=n+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=-1
Tāpiri 1 ki te -2.
m=-1,n=-2
Kua oti te pūnaha te whakatau.
-m+n+1=0,2m+n+4=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&1\\2&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&1\\2&1\end{matrix}\right))\left(\begin{matrix}-1&1\\2&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&-\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}-1\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-1\right)+\frac{1}{3}\left(-4\right)\\\frac{2}{3}\left(-1\right)+\frac{1}{3}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
m=-1,n=-2
Tangohia ngā huānga poukapa m me n.
-m+n+1=0,2m+n+4=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-m-2m+n-n+1-4=0
Me tango 2m+n+4=0 mai i -m+n+1=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-m-2m+1-4=0
Tāpiri n ki te -n. Ka whakakore atu ngā kupu n me -n, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3m+1-4=0
Tāpiri -m ki te -2m.
-3m-3=0
Tāpiri 1 ki te -4.
-3m=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
m=-1
Whakawehea ngā taha e rua ki te -3.
2\left(-1\right)+n+4=0
Whakaurua te -1 mō m ki 2m+n+4=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
-2+n+4=0
Whakareatia 2 ki te -1.
n+2=0
Tāpiri -2 ki te 4.
n=-2
Me tango 2 mai i ngā taha e rua o te whārite.
m=-1,n=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}