\left\{ \begin{array} { l } { 0.5 x - 0.8 y + 9 = 4 } \\ { \frac { x } { 3 } + \frac { y } { 5 } = 4 } \end{array} \right.
Whakaoti mō x, y
x=6
y=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.5x-0.8y+9=4,\frac{1}{3}x+\frac{1}{5}y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.5x-0.8y+9=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.5x-0.8y=-5
Me tango 9 mai i ngā taha e rua o te whārite.
0.5x=0.8y-5
Me tāpiri \frac{4y}{5} ki ngā taha e rua o te whārite.
x=2\left(0.8y-5\right)
Me whakarea ngā taha e rua ki te 2.
x=1.6y-10
Whakareatia 2 ki te \frac{4y}{5}-5.
\frac{1}{3}\left(1.6y-10\right)+\frac{1}{5}y=4
Whakakapia te \frac{8y}{5}-10 mō te x ki tērā atu whārite, \frac{1}{3}x+\frac{1}{5}y=4.
\frac{8}{15}y-\frac{10}{3}+\frac{1}{5}y=4
Whakareatia \frac{1}{3} ki te \frac{8y}{5}-10.
\frac{11}{15}y-\frac{10}{3}=4
Tāpiri \frac{8y}{15} ki te \frac{y}{5}.
\frac{11}{15}y=\frac{22}{3}
Me tāpiri \frac{10}{3} ki ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{15}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=1.6\times 10-10
Whakaurua te 10 mō y ki x=1.6y-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=16-10
Whakareatia 1.6 ki te 10.
x=6
Tāpiri -10 ki te 16.
x=6,y=10
Kua oti te pūnaha te whakatau.
0.5x-0.8y+9=4,\frac{1}{3}x+\frac{1}{5}y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{5}}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}&-\frac{-0.8}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}\\-\frac{\frac{1}{3}}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}&\frac{0.5}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}-5\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}&\frac{24}{11}\\-\frac{10}{11}&\frac{15}{11}\end{matrix}\right)\left(\begin{matrix}-5\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}\left(-5\right)+\frac{24}{11}\times 4\\-\frac{10}{11}\left(-5\right)+\frac{15}{11}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=10
Tangohia ngā huānga poukapa x me y.
0.5x-0.8y+9=4,\frac{1}{3}x+\frac{1}{5}y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{3}\times 0.5x+\frac{1}{3}\left(-0.8\right)y+\frac{1}{3}\times 9=\frac{1}{3}\times 4,0.5\times \frac{1}{3}x+0.5\times \frac{1}{5}y=0.5\times 4
Kia ōrite ai a \frac{x}{2} me \frac{x}{3}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{3} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.5.
\frac{1}{6}x-\frac{4}{15}y+3=\frac{4}{3},\frac{1}{6}x+\frac{1}{10}y=2
Whakarūnātia.
\frac{1}{6}x-\frac{1}{6}x-\frac{4}{15}y-\frac{1}{10}y+3=\frac{4}{3}-2
Me tango \frac{1}{6}x+\frac{1}{10}y=2 mai i \frac{1}{6}x-\frac{4}{15}y+3=\frac{4}{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{4}{15}y-\frac{1}{10}y+3=\frac{4}{3}-2
Tāpiri \frac{x}{6} ki te -\frac{x}{6}. Ka whakakore atu ngā kupu \frac{x}{6} me -\frac{x}{6}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{11}{30}y+3=\frac{4}{3}-2
Tāpiri -\frac{4y}{15} ki te -\frac{y}{10}.
-\frac{11}{30}y+3=-\frac{2}{3}
Tāpiri \frac{4}{3} ki te -2.
-\frac{11}{30}y=-\frac{11}{3}
Me tango 3 mai i ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{30}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{3}x+\frac{1}{5}\times 10=4
Whakaurua te 10 mō y ki \frac{1}{3}x+\frac{1}{5}y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{3}x+2=4
Whakareatia \frac{1}{5} ki te 10.
\frac{1}{3}x=2
Me tango 2 mai i ngā taha e rua o te whārite.
x=6
Me whakarea ngā taha e rua ki te 3.
x=6,y=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}