\left\{ \begin{array} { l } { 0.5 x + 0.7 y = 35 } \\ { x + 0.4 y = 40 } \end{array} \right.
Whakaoti mō x, y
x=28
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.5x+0.7y=35,x+0.4y=40
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.5x+0.7y=35
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.5x=-0.7y+35
Me tango \frac{7y}{10} mai i ngā taha e rua o te whārite.
x=2\left(-0.7y+35\right)
Me whakarea ngā taha e rua ki te 2.
x=-1.4y+70
Whakareatia 2 ki te -\frac{7y}{10}+35.
-1.4y+70+0.4y=40
Whakakapia te -\frac{7y}{5}+70 mō te x ki tērā atu whārite, x+0.4y=40.
-y+70=40
Tāpiri -\frac{7y}{5} ki te \frac{2y}{5}.
-y=-30
Me tango 70 mai i ngā taha e rua o te whārite.
y=30
Whakawehea ngā taha e rua ki te -1.
x=-1.4\times 30+70
Whakaurua te 30 mō y ki x=-1.4y+70. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-42+70
Whakareatia -1.4 ki te 30.
x=28
Tāpiri 70 ki te -42.
x=28,y=30
Kua oti te pūnaha te whakatau.
0.5x+0.7y=35,x+0.4y=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right))\left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&0.7\\1&0.4\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.4}{0.5\times 0.4-0.7}&-\frac{0.7}{0.5\times 0.4-0.7}\\-\frac{1}{0.5\times 0.4-0.7}&\frac{0.5}{0.5\times 0.4-0.7}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.8&1.4\\2&-1\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.8\times 35+1.4\times 40\\2\times 35-40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=28,y=30
Tangohia ngā huānga poukapa x me y.
0.5x+0.7y=35,x+0.4y=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.5x+0.7y=35,0.5x+0.5\times 0.4y=0.5\times 40
Kia ōrite ai a \frac{x}{2} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.5.
0.5x+0.7y=35,0.5x+0.2y=20
Whakarūnātia.
0.5x-0.5x+0.7y-0.2y=35-20
Me tango 0.5x+0.2y=20 mai i 0.5x+0.7y=35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
0.7y-0.2y=35-20
Tāpiri \frac{x}{2} ki te -\frac{x}{2}. Ka whakakore atu ngā kupu \frac{x}{2} me -\frac{x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.5y=35-20
Tāpiri \frac{7y}{10} ki te -\frac{y}{5}.
0.5y=15
Tāpiri 35 ki te -20.
y=30
Me whakarea ngā taha e rua ki te 2.
x+0.4\times 30=40
Whakaurua te 30 mō y ki x+0.4y=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+12=40
Whakareatia 0.4 ki te 30.
x=28
Me tango 12 mai i ngā taha e rua o te whārite.
x=28,y=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}