\left\{ \begin{array} { l } { 0.3 x - 0.5 y = 29 } \\ { 0.9 x = 0.2 y + 19 } \end{array} \right.
Whakaoti mō x, y
x = \frac{370}{39} = 9\frac{19}{39} \approx 9.487179487
y = -\frac{680}{13} = -52\frac{4}{13} \approx -52.307692308
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.9x-0.2y=19
Whakaarohia te whārite tuarua. Tangohia te 0.2y mai i ngā taha e rua.
0.3x-0.5y=29,0.9x-0.2y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.3x-0.5y=29
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.3x=0.5y+29
Me tāpiri \frac{y}{2} ki ngā taha e rua o te whārite.
x=\frac{10}{3}\left(0.5y+29\right)
Whakawehea ngā taha e rua o te whārite ki te 0.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}y+\frac{290}{3}
Whakareatia \frac{10}{3} ki te \frac{y}{2}+29.
0.9\left(\frac{5}{3}y+\frac{290}{3}\right)-0.2y=19
Whakakapia te \frac{5y+290}{3} mō te x ki tērā atu whārite, 0.9x-0.2y=19.
1.5y+87-0.2y=19
Whakareatia 0.9 ki te \frac{5y+290}{3}.
1.3y+87=19
Tāpiri \frac{3y}{2} ki te -\frac{y}{5}.
1.3y=-68
Me tango 87 mai i ngā taha e rua o te whārite.
y=-\frac{680}{13}
Whakawehea ngā taha e rua o te whārite ki te 1.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}\left(-\frac{680}{13}\right)+\frac{290}{3}
Whakaurua te -\frac{680}{13} mō y ki x=\frac{5}{3}y+\frac{290}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3400}{39}+\frac{290}{3}
Whakareatia \frac{5}{3} ki te -\frac{680}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{370}{39}
Tāpiri \frac{290}{3} ki te -\frac{3400}{39} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{370}{39},y=-\frac{680}{13}
Kua oti te pūnaha te whakatau.
0.9x-0.2y=19
Whakaarohia te whārite tuarua. Tangohia te 0.2y mai i ngā taha e rua.
0.3x-0.5y=29,0.9x-0.2y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}29\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}29\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}29\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}29\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.2}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}&-\frac{-0.5}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}\\-\frac{0.9}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}&\frac{0.3}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}\end{matrix}\right)\left(\begin{matrix}29\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{39}&\frac{50}{39}\\-\frac{30}{13}&\frac{10}{13}\end{matrix}\right)\left(\begin{matrix}29\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{39}\times 29+\frac{50}{39}\times 19\\-\frac{30}{13}\times 29+\frac{10}{13}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{370}{39}\\-\frac{680}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{370}{39},y=-\frac{680}{13}
Tangohia ngā huānga poukapa x me y.
0.9x-0.2y=19
Whakaarohia te whārite tuarua. Tangohia te 0.2y mai i ngā taha e rua.
0.3x-0.5y=29,0.9x-0.2y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.9\times 0.3x+0.9\left(-0.5\right)y=0.9\times 29,0.3\times 0.9x+0.3\left(-0.2\right)y=0.3\times 19
Kia ōrite ai a \frac{3x}{10} me \frac{9x}{10}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 0.9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.3.
0.27x-0.45y=26.1,0.27x-0.06y=5.7
Whakarūnātia.
0.27x-0.27x-0.45y+0.06y=\frac{261-57}{10}
Me tango 0.27x-0.06y=5.7 mai i 0.27x-0.45y=26.1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.45y+0.06y=\frac{261-57}{10}
Tāpiri \frac{27x}{100} ki te -\frac{27x}{100}. Ka whakakore atu ngā kupu \frac{27x}{100} me -\frac{27x}{100}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.39y=\frac{261-57}{10}
Tāpiri -\frac{9y}{20} ki te \frac{3y}{50}.
-0.39y=20.4
Tāpiri 26.1 ki te -5.7 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{680}{13}
Whakawehea ngā taha e rua o te whārite ki te -0.39, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
0.9x-0.2\left(-\frac{680}{13}\right)=19
Whakaurua te -\frac{680}{13} mō y ki 0.9x-0.2y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
0.9x+\frac{136}{13}=19
Whakareatia -0.2 ki te -\frac{680}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
0.9x=\frac{111}{13}
Me tango \frac{136}{13} mai i ngā taha e rua o te whārite.
x=\frac{370}{39}
Whakawehea ngā taha e rua o te whārite ki te 0.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{370}{39},y=-\frac{680}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}