Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0.3x+y=4.8,x-y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.3x+y=4.8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.3x=-y+4.8
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{10}{3}\left(-y+4.8\right)
Whakawehea ngā taha e rua o te whārite ki te 0.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{3}y+16
Whakareatia \frac{10}{3} ki te -y+4.8.
-\frac{10}{3}y+16-y=11
Whakakapia te -\frac{10y}{3}+16 mō te x ki tērā atu whārite, x-y=11.
-\frac{13}{3}y+16=11
Tāpiri -\frac{10y}{3} ki te -y.
-\frac{13}{3}y=-5
Me tango 16 mai i ngā taha e rua o te whārite.
y=\frac{15}{13}
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{3}\times \frac{15}{13}+16
Whakaurua te \frac{15}{13} mō y ki x=-\frac{10}{3}y+16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{50}{13}+16
Whakareatia -\frac{10}{3} ki te \frac{15}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{158}{13}
Tāpiri 16 ki te -\frac{50}{13}.
x=\frac{158}{13},y=\frac{15}{13}
Kua oti te pūnaha te whakatau.
0.3x+y=4.8,x-y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4.8\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4.8\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4.8\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4.8\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{0.3\left(-1\right)-1}&-\frac{1}{0.3\left(-1\right)-1}\\-\frac{1}{0.3\left(-1\right)-1}&\frac{0.3}{0.3\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}4.8\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{13}&\frac{10}{13}\\\frac{10}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}4.8\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{13}\times 4.8+\frac{10}{13}\times 11\\\frac{10}{13}\times 4.8-\frac{3}{13}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{158}{13}\\\frac{15}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{158}{13},y=\frac{15}{13}
Tangohia ngā huānga poukapa x me y.
0.3x+y=4.8,x-y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.3x+y=4.8,0.3x+0.3\left(-1\right)y=0.3\times 11
Kia ōrite ai a \frac{3x}{10} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.3.
0.3x+y=4.8,0.3x-0.3y=3.3
Whakarūnātia.
0.3x-0.3x+y+0.3y=4.8-3.3
Me tango 0.3x-0.3y=3.3 mai i 0.3x+y=4.8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+0.3y=4.8-3.3
Tāpiri \frac{3x}{10} ki te -\frac{3x}{10}. Ka whakakore atu ngā kupu \frac{3x}{10} me -\frac{3x}{10}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
1.3y=4.8-3.3
Tāpiri y ki te \frac{3y}{10}.
1.3y=1.5
Tāpiri 4.8 ki te -3.3 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{15}{13}
Whakawehea ngā taha e rua o te whārite ki te 1.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x-\frac{15}{13}=11
Whakaurua te \frac{15}{13} mō y ki x-y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{158}{13}
Me tāpiri \frac{15}{13} ki ngā taha e rua o te whārite.
x=\frac{158}{13},y=\frac{15}{13}
Kua oti te pūnaha te whakatau.