Tīpoka ki ngā ihirangi matua
Whakaoti mō r, t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0.07r+0.02t=0.16,0.05r-0.03t=0.21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.07r+0.02t=0.16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te r mā te wehe i te r i te taha mauī o te tohu ōrite.
0.07r=-0.02t+0.16
Me tango \frac{t}{50} mai i ngā taha e rua o te whārite.
r=\frac{100}{7}\left(-0.02t+0.16\right)
Whakawehea ngā taha e rua o te whārite ki te 0.07, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
r=-\frac{2}{7}t+\frac{16}{7}
Whakareatia \frac{100}{7} ki te -\frac{t}{50}+0.16.
0.05\left(-\frac{2}{7}t+\frac{16}{7}\right)-0.03t=0.21
Whakakapia te \frac{-2t+16}{7} mō te r ki tērā atu whārite, 0.05r-0.03t=0.21.
-\frac{1}{70}t+\frac{4}{35}-0.03t=0.21
Whakareatia 0.05 ki te \frac{-2t+16}{7}.
-\frac{31}{700}t+\frac{4}{35}=0.21
Tāpiri -\frac{t}{70} ki te -\frac{3t}{100}.
-\frac{31}{700}t=\frac{67}{700}
Me tango \frac{4}{35} mai i ngā taha e rua o te whārite.
t=-\frac{67}{31}
Whakawehea ngā taha e rua o te whārite ki te -\frac{31}{700}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
r=-\frac{2}{7}\left(-\frac{67}{31}\right)+\frac{16}{7}
Whakaurua te -\frac{67}{31} mō t ki r=-\frac{2}{7}t+\frac{16}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō r hāngai tonu.
r=\frac{134}{217}+\frac{16}{7}
Whakareatia -\frac{2}{7} ki te -\frac{67}{31} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
r=\frac{90}{31}
Tāpiri \frac{16}{7} ki te \frac{134}{217} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
r=\frac{90}{31},t=-\frac{67}{31}
Kua oti te pūnaha te whakatau.
0.07r+0.02t=0.16,0.05r-0.03t=0.21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right)\left(\begin{matrix}r\\t\end{matrix}\right)=\left(\begin{matrix}0.16\\0.21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right))\left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right)\left(\begin{matrix}r\\t\end{matrix}\right)=inverse(\left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right))\left(\begin{matrix}0.16\\0.21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}r\\t\end{matrix}\right)=inverse(\left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right))\left(\begin{matrix}0.16\\0.21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}r\\t\end{matrix}\right)=inverse(\left(\begin{matrix}0.07&0.02\\0.05&-0.03\end{matrix}\right))\left(\begin{matrix}0.16\\0.21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}r\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{0.03}{0.07\left(-0.03\right)-0.02\times 0.05}&-\frac{0.02}{0.07\left(-0.03\right)-0.02\times 0.05}\\-\frac{0.05}{0.07\left(-0.03\right)-0.02\times 0.05}&\frac{0.07}{0.07\left(-0.03\right)-0.02\times 0.05}\end{matrix}\right)\left(\begin{matrix}0.16\\0.21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}r\\t\end{matrix}\right)=\left(\begin{matrix}\frac{300}{31}&\frac{200}{31}\\\frac{500}{31}&-\frac{700}{31}\end{matrix}\right)\left(\begin{matrix}0.16\\0.21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}r\\t\end{matrix}\right)=\left(\begin{matrix}\frac{300}{31}\times 0.16+\frac{200}{31}\times 0.21\\\frac{500}{31}\times 0.16-\frac{700}{31}\times 0.21\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}r\\t\end{matrix}\right)=\left(\begin{matrix}\frac{90}{31}\\-\frac{67}{31}\end{matrix}\right)
Mahia ngā tātaitanga.
r=\frac{90}{31},t=-\frac{67}{31}
Tangohia ngā huānga poukapa r me t.
0.07r+0.02t=0.16,0.05r-0.03t=0.21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.05\times 0.07r+0.05\times 0.02t=0.05\times 0.16,0.07\times 0.05r+0.07\left(-0.03\right)t=0.07\times 0.21
Kia ōrite ai a \frac{7r}{100} me \frac{r}{20}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 0.05 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.07.
0.0035r+0.001t=0.008,0.0035r-0.0021t=0.0147
Whakarūnātia.
0.0035r-0.0035r+0.001t+0.0021t=0.008-0.0147
Me tango 0.0035r-0.0021t=0.0147 mai i 0.0035r+0.001t=0.008 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
0.001t+0.0021t=0.008-0.0147
Tāpiri \frac{7r}{2000} ki te -\frac{7r}{2000}. Ka whakakore atu ngā kupu \frac{7r}{2000} me -\frac{7r}{2000}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.0031t=0.008-0.0147
Tāpiri \frac{t}{1000} ki te \frac{21t}{10000}.
0.0031t=-0.0067
Tāpiri 0.008 ki te -0.0147 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
t=-\frac{67}{31}
Whakawehea ngā taha e rua o te whārite ki te 0.0031, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
0.05r-0.03\left(-\frac{67}{31}\right)=0.21
Whakaurua te -\frac{67}{31} mō t ki 0.05r-0.03t=0.21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō r hāngai tonu.
0.05r+\frac{201}{3100}=0.21
Whakareatia -0.03 ki te -\frac{67}{31} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
0.05r=\frac{9}{62}
Me tango \frac{201}{3100} mai i ngā taha e rua o te whārite.
r=\frac{90}{31}
Me whakarea ngā taha e rua ki te 20.
r=\frac{90}{31},t=-\frac{67}{31}
Kua oti te pūnaha te whakatau.