Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0.6x+2y=20,-4x+y+2=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.6x+2y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.6x=-2y+20
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{5}{3}\left(-2y+20\right)
Whakawehea ngā taha e rua o te whārite ki te 0.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{3}y+\frac{100}{3}
Whakareatia \frac{5}{3} ki te -2y+20.
-4\left(-\frac{10}{3}y+\frac{100}{3}\right)+y+2=-1
Whakakapia te \frac{-10y+100}{3} mō te x ki tērā atu whārite, -4x+y+2=-1.
\frac{40}{3}y-\frac{400}{3}+y+2=-1
Whakareatia -4 ki te \frac{-10y+100}{3}.
\frac{43}{3}y-\frac{400}{3}+2=-1
Tāpiri \frac{40y}{3} ki te y.
\frac{43}{3}y-\frac{394}{3}=-1
Tāpiri -\frac{400}{3} ki te 2.
\frac{43}{3}y=\frac{391}{3}
Me tāpiri \frac{394}{3} ki ngā taha e rua o te whārite.
y=\frac{391}{43}
Whakawehea ngā taha e rua o te whārite ki te \frac{43}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{3}\times \frac{391}{43}+\frac{100}{3}
Whakaurua te \frac{391}{43} mō y ki x=-\frac{10}{3}y+\frac{100}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3910}{129}+\frac{100}{3}
Whakareatia -\frac{10}{3} ki te \frac{391}{43} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{130}{43}
Tāpiri \frac{100}{3} ki te -\frac{3910}{129} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{130}{43},y=\frac{391}{43}
Kua oti te pūnaha te whakatau.
0.6x+2y=20,-4x+y+2=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}20\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}20\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}20\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{0.6-2\left(-4\right)}&-\frac{2}{0.6-2\left(-4\right)}\\-\frac{-4}{0.6-2\left(-4\right)}&\frac{0.6}{0.6-2\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}20\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{43}&-\frac{10}{43}\\\frac{20}{43}&\frac{3}{43}\end{matrix}\right)\left(\begin{matrix}20\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{43}\times 20-\frac{10}{43}\left(-3\right)\\\frac{20}{43}\times 20+\frac{3}{43}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{130}{43}\\\frac{391}{43}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{130}{43},y=\frac{391}{43}
Tangohia ngā huānga poukapa x me y.
0.6x+2y=20,-4x+y+2=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 0.6x-4\times 2y=-4\times 20,0.6\left(-4\right)x+0.6y+0.6\times 2=0.6\left(-1\right)
Kia ōrite ai a \frac{3x}{5} me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.6.
-2.4x-8y=-80,-2.4x+0.6y+1.2=-0.6
Whakarūnātia.
-2.4x+2.4x-8y-0.6y-1.2=-80+0.6
Me tango -2.4x+0.6y+1.2=-0.6 mai i -2.4x-8y=-80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-0.6y-1.2=-80+0.6
Tāpiri -\frac{12x}{5} ki te \frac{12x}{5}. Ka whakakore atu ngā kupu -\frac{12x}{5} me \frac{12x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8.6y-1.2=-80+0.6
Tāpiri -8y ki te -\frac{3y}{5}.
-8.6y-1.2=-79.4
Tāpiri -80 ki te 0.6.
-8.6y=-78.2
Me tāpiri 1.2 ki ngā taha e rua o te whārite.
y=\frac{391}{43}
Whakawehea ngā taha e rua o te whārite ki te -8.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-4x+\frac{391}{43}+2=-1
Whakaurua te \frac{391}{43} mō y ki -4x+y+2=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+\frac{477}{43}=-1
Tāpiri \frac{391}{43} ki te 2.
-4x=-\frac{520}{43}
Me tango \frac{477}{43} mai i ngā taha e rua o te whārite.
x=\frac{130}{43}
Whakawehea ngā taha e rua ki te -4.
x=\frac{130}{43},y=\frac{391}{43}
Kua oti te pūnaha te whakatau.