Tīpoka ki ngā ihirangi matua
Whakaoti mō b, c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-b+c=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-b+c=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-9+3b+c=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3b+c=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-b+c=-1,3b+c=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-b+c=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te b mā te wehe i te b i te taha mauī o te tohu ōrite.
-b=-c-1
Me tango c mai i ngā taha e rua o te whārite.
b=-\left(-c-1\right)
Whakawehea ngā taha e rua ki te -1.
b=c+1
Whakareatia -1 ki te -c-1.
3\left(c+1\right)+c=9
Whakakapia te c+1 mō te b ki tērā atu whārite, 3b+c=9.
3c+3+c=9
Whakareatia 3 ki te c+1.
4c+3=9
Tāpiri 3c ki te c.
4c=6
Me tango 3 mai i ngā taha e rua o te whārite.
c=\frac{3}{2}
Whakawehea ngā taha e rua ki te 4.
b=\frac{3}{2}+1
Whakaurua te \frac{3}{2} mō c ki b=c+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=\frac{5}{2}
Tāpiri 1 ki te \frac{3}{2}.
b=\frac{5}{2},c=\frac{3}{2}
Kua oti te pūnaha te whakatau.
1-b+c=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-b+c=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-9+3b+c=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3b+c=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-b+c=-1,3b+c=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&1\\3&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1&1\\3&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&-\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-1\right)+\frac{1}{4}\times 9\\\frac{3}{4}\left(-1\right)+\frac{1}{4}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
b=\frac{5}{2},c=\frac{3}{2}
Tangohia ngā huānga poukapa b me c.
1-b+c=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-b+c=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-9+3b+c=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3b+c=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-b+c=-1,3b+c=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-b-3b+c-c=-1-9
Me tango 3b+c=9 mai i -b+c=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-b-3b=-1-9
Tāpiri c ki te -c. Ka whakakore atu ngā kupu c me -c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4b=-1-9
Tāpiri -b ki te -3b.
-4b=-10
Tāpiri -1 ki te -9.
b=\frac{5}{2}
Whakawehea ngā taha e rua ki te -4.
3\times \frac{5}{2}+c=9
Whakaurua te \frac{5}{2} mō b ki 3b+c=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
\frac{15}{2}+c=9
Whakareatia 3 ki te \frac{5}{2}.
c=\frac{3}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
b=\frac{5}{2},c=\frac{3}{2}
Kua oti te pūnaha te whakatau.