\left\{ \begin{array} { l } { 0 = - 1 + a + b } \\ { 0 = - 9 + 3 a + b } \end{array} \right.
Whakaoti mō a, b
a=4
b=-3
Tohaina
Kua tāruatia ki te papatopenga
-1+a+b=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-9+3a+b=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3a+b=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
a+b=1,3a+b=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+1
Me tango b mai i ngā taha e rua o te whārite.
3\left(-b+1\right)+b=9
Whakakapia te -b+1 mō te a ki tērā atu whārite, 3a+b=9.
-3b+3+b=9
Whakareatia 3 ki te -b+1.
-2b+3=9
Tāpiri -3b ki te b.
-2b=6
Me tango 3 mai i ngā taha e rua o te whārite.
b=-3
Whakawehea ngā taha e rua ki te -2.
a=-\left(-3\right)+1
Whakaurua te -3 mō b ki a=-b+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=3+1
Whakareatia -1 ki te -3.
a=4
Tāpiri 1 ki te 3.
a=4,b=-3
Kua oti te pūnaha te whakatau.
-1+a+b=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-9+3a+b=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3a+b=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
a+b=1,3a+b=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}+\frac{1}{2}\times 9\\\frac{3}{2}-\frac{1}{2}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
a=4,b=-3
Tangohia ngā huānga poukapa a me b.
-1+a+b=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-9+3a+b=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3a+b=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
a+b=1,3a+b=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-3a+b-b=1-9
Me tango 3a+b=9 mai i a+b=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
a-3a=1-9
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2a=1-9
Tāpiri a ki te -3a.
-2a=-8
Tāpiri 1 ki te -9.
a=4
Whakawehea ngā taha e rua ki te -2.
3\times 4+b=9
Whakaurua te 4 mō a ki 3a+b=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
12+b=9
Whakareatia 3 ki te 4.
b=-3
Me tango 12 mai i ngā taha e rua o te whārite.
a=4,b=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}