\left\{ \begin{array} { l } { - x + 5 y = 15 } \\ { 4 x + 10 y = - 2 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{16}{3} = -5\frac{1}{3} \approx -5.333333333
y = \frac{29}{15} = 1\frac{14}{15} \approx 1.933333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+5y=15,4x+10y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+5y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-5y+15
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\left(-5y+15\right)
Whakawehea ngā taha e rua ki te -1.
x=5y-15
Whakareatia -1 ki te -5y+15.
4\left(5y-15\right)+10y=-2
Whakakapia te -15+5y mō te x ki tērā atu whārite, 4x+10y=-2.
20y-60+10y=-2
Whakareatia 4 ki te -15+5y.
30y-60=-2
Tāpiri 20y ki te 10y.
30y=58
Me tāpiri 60 ki ngā taha e rua o te whārite.
y=\frac{29}{15}
Whakawehea ngā taha e rua ki te 30.
x=5\times \frac{29}{15}-15
Whakaurua te \frac{29}{15} mō y ki x=5y-15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{29}{3}-15
Whakareatia 5 ki te \frac{29}{15}.
x=-\frac{16}{3}
Tāpiri -15 ki te \frac{29}{3}.
x=-\frac{16}{3},y=\frac{29}{15}
Kua oti te pūnaha te whakatau.
-x+5y=15,4x+10y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&5\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&5\\4&10\end{matrix}\right))\left(\begin{matrix}-1&5\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&5\\4&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-10-5\times 4}&-\frac{5}{-10-5\times 4}\\-\frac{4}{-10-5\times 4}&-\frac{1}{-10-5\times 4}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{6}\\\frac{2}{15}&\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 15+\frac{1}{6}\left(-2\right)\\\frac{2}{15}\times 15+\frac{1}{30}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{16}{3}\\\frac{29}{15}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{16}{3},y=\frac{29}{15}
Tangohia ngā huānga poukapa x me y.
-x+5y=15,4x+10y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-1\right)x+4\times 5y=4\times 15,-4x-10y=-\left(-2\right)
Kia ōrite ai a -x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-4x+20y=60,-4x-10y=2
Whakarūnātia.
-4x+4x+20y+10y=60-2
Me tango -4x-10y=2 mai i -4x+20y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y+10y=60-2
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
30y=60-2
Tāpiri 20y ki te 10y.
30y=58
Tāpiri 60 ki te -2.
y=\frac{29}{15}
Whakawehea ngā taha e rua ki te 30.
4x+10\times \frac{29}{15}=-2
Whakaurua te \frac{29}{15} mō y ki 4x+10y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{58}{3}=-2
Whakareatia 10 ki te \frac{29}{15}.
4x=-\frac{64}{3}
Me tango \frac{58}{3} mai i ngā taha e rua o te whārite.
x=-\frac{16}{3}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{16}{3},y=\frac{29}{15}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}