\left\{ \begin{array} { l } { - x + 3 y = 6 } \\ { x - 7 y = 14 } \end{array} \right.
Whakaoti mō x, y
x=-21
y=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+3y=6,x-7y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-3y+6
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\left(-3y+6\right)
Whakawehea ngā taha e rua ki te -1.
x=3y-6
Whakareatia -1 ki te -3y+6.
3y-6-7y=14
Whakakapia te -6+3y mō te x ki tērā atu whārite, x-7y=14.
-4y-6=14
Tāpiri 3y ki te -7y.
-4y=20
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=-5
Whakawehea ngā taha e rua ki te -4.
x=3\left(-5\right)-6
Whakaurua te -5 mō y ki x=3y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-15-6
Whakareatia 3 ki te -5.
x=-21
Tāpiri -6 ki te -15.
x=-21,y=-5
Kua oti te pūnaha te whakatau.
-x+3y=6,x-7y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}6\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&3\\1&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}6\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}6\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-3}&-\frac{3}{-\left(-7\right)-3}\\-\frac{1}{-\left(-7\right)-3}&-\frac{1}{-\left(-7\right)-3}\end{matrix}\right)\left(\begin{matrix}6\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4}&-\frac{3}{4}\\-\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4}\times 6-\frac{3}{4}\times 14\\-\frac{1}{4}\times 6-\frac{1}{4}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-21\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-21,y=-5
Tangohia ngā huānga poukapa x me y.
-x+3y=6,x-7y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x+3y=6,-x-\left(-7y\right)=-14
Kia ōrite ai a -x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-x+3y=6,-x+7y=-14
Whakarūnātia.
-x+x+3y-7y=6+14
Me tango -x+7y=-14 mai i -x+3y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-7y=6+14
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=6+14
Tāpiri 3y ki te -7y.
-4y=20
Tāpiri 6 ki te 14.
y=-5
Whakawehea ngā taha e rua ki te -4.
x-7\left(-5\right)=14
Whakaurua te -5 mō y ki x-7y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+35=14
Whakareatia -7 ki te -5.
x=-21
Me tango 35 mai i ngā taha e rua o te whārite.
x=-21,y=-5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}