\left\{ \begin{array} { l } { - x + 3 y = 2 } \\ { 2 x - 5 y = 7 } \end{array} \right.
Whakaoti mō x, y
x=31
y=11
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+3y=2,2x-5y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+3y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-3y+2
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\left(-3y+2\right)
Whakawehea ngā taha e rua ki te -1.
x=3y-2
Whakareatia -1 ki te -3y+2.
2\left(3y-2\right)-5y=7
Whakakapia te 3y-2 mō te x ki tērā atu whārite, 2x-5y=7.
6y-4-5y=7
Whakareatia 2 ki te 3y-2.
y-4=7
Tāpiri 6y ki te -5y.
y=11
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=3\times 11-2
Whakaurua te 11 mō y ki x=3y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=33-2
Whakareatia 3 ki te 11.
x=31
Tāpiri -2 ki te 33.
x=31,y=11
Kua oti te pūnaha te whakatau.
-x+3y=2,2x-5y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&3\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}-1&3\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&3\\2&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-\left(-5\right)-3\times 2}&-\frac{3}{-\left(-5\right)-3\times 2}\\-\frac{2}{-\left(-5\right)-3\times 2}&-\frac{1}{-\left(-5\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}2\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&3\\2&1\end{matrix}\right)\left(\begin{matrix}2\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 2+3\times 7\\2\times 2+7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}31\\11\end{matrix}\right)
Mahia ngā tātaitanga.
x=31,y=11
Tangohia ngā huānga poukapa x me y.
-x+3y=2,2x-5y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-1\right)x+2\times 3y=2\times 2,-2x-\left(-5y\right)=-7
Kia ōrite ai a -x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-2x+6y=4,-2x+5y=-7
Whakarūnātia.
-2x+2x+6y-5y=4+7
Me tango -2x+5y=-7 mai i -2x+6y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-5y=4+7
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=4+7
Tāpiri 6y ki te -5y.
y=11
Tāpiri 4 ki te 7.
2x-5\times 11=7
Whakaurua te 11 mō y ki 2x-5y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-55=7
Whakareatia -5 ki te 11.
2x=62
Me tāpiri 55 ki ngā taha e rua o te whārite.
x=31
Whakawehea ngā taha e rua ki te 2.
x=31,y=11
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}