Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-8x+4y=24,-7x+7y=28
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-8x+4y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-8x=-4y+24
Me tango 4y mai i ngā taha e rua o te whārite.
x=-\frac{1}{8}\left(-4y+24\right)
Whakawehea ngā taha e rua ki te -8.
x=\frac{1}{2}y-3
Whakareatia -\frac{1}{8} ki te -4y+24.
-7\left(\frac{1}{2}y-3\right)+7y=28
Whakakapia te \frac{y}{2}-3 mō te x ki tērā atu whārite, -7x+7y=28.
-\frac{7}{2}y+21+7y=28
Whakareatia -7 ki te \frac{y}{2}-3.
\frac{7}{2}y+21=28
Tāpiri -\frac{7y}{2} ki te 7y.
\frac{7}{2}y=7
Me tango 21 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\times 2-3
Whakaurua te 2 mō y ki x=\frac{1}{2}y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1-3
Whakareatia \frac{1}{2} ki te 2.
x=-2
Tāpiri -3 ki te 1.
x=-2,y=2
Kua oti te pūnaha te whakatau.
-8x+4y=24,-7x+7y=28
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\28\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-8&4\\-7&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-8\times 7-4\left(-7\right)}&-\frac{4}{-8\times 7-4\left(-7\right)}\\-\frac{-7}{-8\times 7-4\left(-7\right)}&-\frac{8}{-8\times 7-4\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}24\\28\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{7}\\-\frac{1}{4}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}24\\28\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 24+\frac{1}{7}\times 28\\-\frac{1}{4}\times 24+\frac{2}{7}\times 28\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=2
Tangohia ngā huānga poukapa x me y.
-8x+4y=24,-7x+7y=28
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\left(-8\right)x-7\times 4y=-7\times 24,-8\left(-7\right)x-8\times 7y=-8\times 28
Kia ōrite ai a -8x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -8.
56x-28y=-168,56x-56y=-224
Whakarūnātia.
56x-56x-28y+56y=-168+224
Me tango 56x-56y=-224 mai i 56x-28y=-168 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-28y+56y=-168+224
Tāpiri 56x ki te -56x. Ka whakakore atu ngā kupu 56x me -56x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
28y=-168+224
Tāpiri -28y ki te 56y.
28y=56
Tāpiri -168 ki te 224.
y=2
Whakawehea ngā taha e rua ki te 28.
-7x+7\times 2=28
Whakaurua te 2 mō y ki -7x+7y=28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x+14=28
Whakareatia 7 ki te 2.
-7x=14
Me tango 14 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -7.
x=-2,y=2
Kua oti te pūnaha te whakatau.