\left\{ \begin{array} { l } { - 7 x - 4 y = 62 } \\ { 3 x + y = - 2 } \end{array} \right.
Whakaoti mō x, y
x = \frac{54}{5} = 10\frac{4}{5} = 10.8
y = -\frac{172}{5} = -34\frac{2}{5} = -34.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x-4y=62,3x+y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7x-4y=62
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7x=4y+62
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=-\frac{1}{7}\left(4y+62\right)
Whakawehea ngā taha e rua ki te -7.
x=-\frac{4}{7}y-\frac{62}{7}
Whakareatia -\frac{1}{7} ki te 4y+62.
3\left(-\frac{4}{7}y-\frac{62}{7}\right)+y=-2
Whakakapia te \frac{-4y-62}{7} mō te x ki tērā atu whārite, 3x+y=-2.
-\frac{12}{7}y-\frac{186}{7}+y=-2
Whakareatia 3 ki te \frac{-4y-62}{7}.
-\frac{5}{7}y-\frac{186}{7}=-2
Tāpiri -\frac{12y}{7} ki te y.
-\frac{5}{7}y=\frac{172}{7}
Me tāpiri \frac{186}{7} ki ngā taha e rua o te whārite.
y=-\frac{172}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{7}\left(-\frac{172}{5}\right)-\frac{62}{7}
Whakaurua te -\frac{172}{5} mō y ki x=-\frac{4}{7}y-\frac{62}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{688}{35}-\frac{62}{7}
Whakareatia -\frac{4}{7} ki te -\frac{172}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{54}{5}
Tāpiri -\frac{62}{7} ki te \frac{688}{35} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{54}{5},y=-\frac{172}{5}
Kua oti te pūnaha te whakatau.
-7x-4y=62,3x+y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}62\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7&-4\\3&1\end{matrix}\right))\left(\begin{matrix}-7&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-4\\3&1\end{matrix}\right))\left(\begin{matrix}62\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7&-4\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-4\\3&1\end{matrix}\right))\left(\begin{matrix}62\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-4\\3&1\end{matrix}\right))\left(\begin{matrix}62\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-7-\left(-4\times 3\right)}&-\frac{-4}{-7-\left(-4\times 3\right)}\\-\frac{3}{-7-\left(-4\times 3\right)}&-\frac{7}{-7-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}62\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\-\frac{3}{5}&-\frac{7}{5}\end{matrix}\right)\left(\begin{matrix}62\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 62+\frac{4}{5}\left(-2\right)\\-\frac{3}{5}\times 62-\frac{7}{5}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{54}{5}\\-\frac{172}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{54}{5},y=-\frac{172}{5}
Tangohia ngā huānga poukapa x me y.
-7x-4y=62,3x+y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-7\right)x+3\left(-4\right)y=3\times 62,-7\times 3x-7y=-7\left(-2\right)
Kia ōrite ai a -7x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7.
-21x-12y=186,-21x-7y=14
Whakarūnātia.
-21x+21x-12y+7y=186-14
Me tango -21x-7y=14 mai i -21x-12y=186 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y+7y=186-14
Tāpiri -21x ki te 21x. Ka whakakore atu ngā kupu -21x me 21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=186-14
Tāpiri -12y ki te 7y.
-5y=172
Tāpiri 186 ki te -14.
y=-\frac{172}{5}
Whakawehea ngā taha e rua ki te -5.
3x-\frac{172}{5}=-2
Whakaurua te -\frac{172}{5} mō y ki 3x+y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{162}{5}
Me tāpiri \frac{172}{5} ki ngā taha e rua o te whārite.
x=\frac{54}{5}
Whakawehea ngā taha e rua ki te 3.
x=\frac{54}{5},y=-\frac{172}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}