\left\{ \begin{array} { l } { - 7 x - 2 y = 14 } \\ { 6 x + 6 y = 18 } \end{array} \right.
Whakaoti mō x, y
x=-4
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x-2y=14,6x+6y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7x-2y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7x=2y+14
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=-\frac{1}{7}\left(2y+14\right)
Whakawehea ngā taha e rua ki te -7.
x=-\frac{2}{7}y-2
Whakareatia -\frac{1}{7} ki te 14+2y.
6\left(-\frac{2}{7}y-2\right)+6y=18
Whakakapia te -\frac{2y}{7}-2 mō te x ki tērā atu whārite, 6x+6y=18.
-\frac{12}{7}y-12+6y=18
Whakareatia 6 ki te -\frac{2y}{7}-2.
\frac{30}{7}y-12=18
Tāpiri -\frac{12y}{7} ki te 6y.
\frac{30}{7}y=30
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te \frac{30}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{7}\times 7-2
Whakaurua te 7 mō y ki x=-\frac{2}{7}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2-2
Whakareatia -\frac{2}{7} ki te 7.
x=-4
Tāpiri -2 ki te -2.
x=-4,y=7
Kua oti te pūnaha te whakatau.
-7x-2y=14,6x+6y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}14\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7&-2\\6&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}14\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}14\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-7\times 6-\left(-2\times 6\right)}&-\frac{-2}{-7\times 6-\left(-2\times 6\right)}\\-\frac{6}{-7\times 6-\left(-2\times 6\right)}&-\frac{7}{-7\times 6-\left(-2\times 6\right)}\end{matrix}\right)\left(\begin{matrix}14\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{1}{15}\\\frac{1}{5}&\frac{7}{30}\end{matrix}\right)\left(\begin{matrix}14\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 14-\frac{1}{15}\times 18\\\frac{1}{5}\times 14+\frac{7}{30}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=7
Tangohia ngā huānga poukapa x me y.
-7x-2y=14,6x+6y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\left(-7\right)x+6\left(-2\right)y=6\times 14,-7\times 6x-7\times 6y=-7\times 18
Kia ōrite ai a -7x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7.
-42x-12y=84,-42x-42y=-126
Whakarūnātia.
-42x+42x-12y+42y=84+126
Me tango -42x-42y=-126 mai i -42x-12y=84 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y+42y=84+126
Tāpiri -42x ki te 42x. Ka whakakore atu ngā kupu -42x me 42x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
30y=84+126
Tāpiri -12y ki te 42y.
30y=210
Tāpiri 84 ki te 126.
y=7
Whakawehea ngā taha e rua ki te 30.
6x+6\times 7=18
Whakaurua te 7 mō y ki 6x+6y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+42=18
Whakareatia 6 ki te 7.
6x=-24
Me tango 42 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 6.
x=-4,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}