\left\{ \begin{array} { l } { - 6 x - 4 y = 2 } \\ { 2 x + 8 y = 26 } \end{array} \right.
Whakaoti mō x, y
x=-3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x-4y=2,2x+8y=26
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-6x-4y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-6x=4y+2
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=-\frac{1}{6}\left(4y+2\right)
Whakawehea ngā taha e rua ki te -6.
x=-\frac{2}{3}y-\frac{1}{3}
Whakareatia -\frac{1}{6} ki te 4y+2.
2\left(-\frac{2}{3}y-\frac{1}{3}\right)+8y=26
Whakakapia te \frac{-2y-1}{3} mō te x ki tērā atu whārite, 2x+8y=26.
-\frac{4}{3}y-\frac{2}{3}+8y=26
Whakareatia 2 ki te \frac{-2y-1}{3}.
\frac{20}{3}y-\frac{2}{3}=26
Tāpiri -\frac{4y}{3} ki te 8y.
\frac{20}{3}y=\frac{80}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{20}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times 4-\frac{1}{3}
Whakaurua te 4 mō y ki x=-\frac{2}{3}y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-8-1}{3}
Whakareatia -\frac{2}{3} ki te 4.
x=-3
Tāpiri -\frac{1}{3} ki te -\frac{8}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=4
Kua oti te pūnaha te whakatau.
-6x-4y=2,2x+8y=26
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\26\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-6&-4\\2&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-6\times 8-\left(-4\times 2\right)}&-\frac{-4}{-6\times 8-\left(-4\times 2\right)}\\-\frac{2}{-6\times 8-\left(-4\times 2\right)}&-\frac{6}{-6\times 8-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\26\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{1}{10}\\\frac{1}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}2\\26\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2-\frac{1}{10}\times 26\\\frac{1}{20}\times 2+\frac{3}{20}\times 26\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=4
Tangohia ngā huānga poukapa x me y.
-6x-4y=2,2x+8y=26
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-6\right)x+2\left(-4\right)y=2\times 2,-6\times 2x-6\times 8y=-6\times 26
Kia ōrite ai a -6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -6.
-12x-8y=4,-12x-48y=-156
Whakarūnātia.
-12x+12x-8y+48y=4+156
Me tango -12x-48y=-156 mai i -12x-8y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y+48y=4+156
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
40y=4+156
Tāpiri -8y ki te 48y.
40y=160
Tāpiri 4 ki te 156.
y=4
Whakawehea ngā taha e rua ki te 40.
2x+8\times 4=26
Whakaurua te 4 mō y ki 2x+8y=26. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+32=26
Whakareatia 8 ki te 4.
2x=-6
Me tango 32 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 2.
x=-3,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}