\left\{ \begin{array} { l } { - 5 x + y = - 12 } \\ { 5 y = 10 x - 15 } \end{array} \right.
Whakaoti mō x, y
x=3
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y-10x=-15
Whakaarohia te whārite tuarua. Tangohia te 10x mai i ngā taha e rua.
-5x+y=-12,-10x+5y=-15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+y=-12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-y-12
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-y-12\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{1}{5}y+\frac{12}{5}
Whakareatia -\frac{1}{5} ki te -y-12.
-10\left(\frac{1}{5}y+\frac{12}{5}\right)+5y=-15
Whakakapia te \frac{12+y}{5} mō te x ki tērā atu whārite, -10x+5y=-15.
-2y-24+5y=-15
Whakareatia -10 ki te \frac{12+y}{5}.
3y-24=-15
Tāpiri -2y ki te 5y.
3y=9
Me tāpiri 24 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{5}\times 3+\frac{12}{5}
Whakaurua te 3 mō y ki x=\frac{1}{5}y+\frac{12}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+12}{5}
Whakareatia \frac{1}{5} ki te 3.
x=3
Tāpiri \frac{12}{5} ki te \frac{3}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=3
Kua oti te pūnaha te whakatau.
5y-10x=-15
Whakaarohia te whārite tuarua. Tangohia te 10x mai i ngā taha e rua.
-5x+y=-12,-10x+5y=-15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\-15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-12\\-15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&1\\-10&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-12\\-15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\-10&5\end{matrix}\right))\left(\begin{matrix}-12\\-15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-5\times 5-\left(-10\right)}&-\frac{1}{-5\times 5-\left(-10\right)}\\-\frac{-10}{-5\times 5-\left(-10\right)}&-\frac{5}{-5\times 5-\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}-12\\-15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{15}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-12\\-15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-12\right)+\frac{1}{15}\left(-15\right)\\-\frac{2}{3}\left(-12\right)+\frac{1}{3}\left(-15\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=3
Tangohia ngā huānga poukapa x me y.
5y-10x=-15
Whakaarohia te whārite tuarua. Tangohia te 10x mai i ngā taha e rua.
-5x+y=-12,-10x+5y=-15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-10\left(-5\right)x-10y=-10\left(-12\right),-5\left(-10\right)x-5\times 5y=-5\left(-15\right)
Kia ōrite ai a -5x me -10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
50x-10y=120,50x-25y=75
Whakarūnātia.
50x-50x-10y+25y=120-75
Me tango 50x-25y=75 mai i 50x-10y=120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y+25y=120-75
Tāpiri 50x ki te -50x. Ka whakakore atu ngā kupu 50x me -50x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15y=120-75
Tāpiri -10y ki te 25y.
15y=45
Tāpiri 120 ki te -75.
y=3
Whakawehea ngā taha e rua ki te 15.
-10x+5\times 3=-15
Whakaurua te 3 mō y ki -10x+5y=-15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-10x+15=-15
Whakareatia 5 ki te 3.
-10x=-30
Me tango 15 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te -10.
x=3,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}