\left\{ \begin{array} { l } { - 5 a = 4 a + 2 b - 3 } \\ { - \frac { b } { 2 a } = 1 } \end{array} \right.
Whakaoti mō a, b
a=\frac{3}{5}=0.6
b = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Tohaina
Kua tāruatia ki te papatopenga
-5a-4a=2b-3
Whakaarohia te whārite tuatahi. Tangohia te 4a mai i ngā taha e rua.
-9a=2b-3
Pahekotia te -5a me -4a, ka -9a.
a=-\frac{1}{9}\left(2b-3\right)
Whakawehea ngā taha e rua ki te -9.
a=-\frac{2}{9}b+\frac{1}{3}
Whakareatia -\frac{1}{9} ki te 2b-3.
-2\left(-\frac{2}{9}b+\frac{1}{3}\right)-b=0
Whakakapia te -\frac{2b}{9}+\frac{1}{3} mō te a ki tērā atu whārite, -2a-b=0.
\frac{4}{9}b-\frac{2}{3}-b=0
Whakareatia -2 ki te -\frac{2b}{9}+\frac{1}{3}.
-\frac{5}{9}b-\frac{2}{3}=0
Tāpiri \frac{4b}{9} ki te -b.
-\frac{5}{9}b=\frac{2}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
b=-\frac{6}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{2}{9}\left(-\frac{6}{5}\right)+\frac{1}{3}
Whakaurua te -\frac{6}{5} mō b ki a=-\frac{2}{9}b+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{4}{15}+\frac{1}{3}
Whakareatia -\frac{2}{9} ki te -\frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{3}{5}
Tāpiri \frac{1}{3} ki te \frac{4}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{3}{5},b=-\frac{6}{5}
Kua oti te pūnaha te whakatau.
-5a-4a=2b-3
Whakaarohia te whārite tuatahi. Tangohia te 4a mai i ngā taha e rua.
-9a=2b-3
Pahekotia te -5a me -4a, ka -9a.
-9a-2b=-3
Tangohia te 2b mai i ngā taha e rua.
-b=2a
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2a.
-b-2a=0
Tangohia te 2a mai i ngā taha e rua.
-9a-2b=-3,-2a-b=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-2\\-2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-9\left(-1\right)-\left(-2\left(-2\right)\right)}&-\frac{-2}{-9\left(-1\right)-\left(-2\left(-2\right)\right)}\\-\frac{-2}{-9\left(-1\right)-\left(-2\left(-2\right)\right)}&-\frac{9}{-9\left(-1\right)-\left(-2\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&-\frac{9}{5}\end{matrix}\right)\left(\begin{matrix}-3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-3\right)\\\frac{2}{5}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\\-\frac{6}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{3}{5},b=-\frac{6}{5}
Tangohia ngā huānga poukapa a me b.
-5a-4a=2b-3
Whakaarohia te whārite tuatahi. Tangohia te 4a mai i ngā taha e rua.
-9a=2b-3
Pahekotia te -5a me -4a, ka -9a.
-9a-2b=-3
Tangohia te 2b mai i ngā taha e rua.
-b=2a
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2a.
-b-2a=0
Tangohia te 2a mai i ngā taha e rua.
-9a-2b=-3,-2a-b=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\left(-9\right)a-2\left(-2\right)b=-2\left(-3\right),-9\left(-2\right)a-9\left(-1\right)b=0
Kia ōrite ai a -9a me -2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -9.
18a+4b=6,18a+9b=0
Whakarūnātia.
18a-18a+4b-9b=6
Me tango 18a+9b=0 mai i 18a+4b=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4b-9b=6
Tāpiri 18a ki te -18a. Ka whakakore atu ngā kupu 18a me -18a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5b=6
Tāpiri 4b ki te -9b.
b=-\frac{6}{5}
Whakawehea ngā taha e rua ki te -5.
-2a-\left(-\frac{6}{5}\right)=0
Whakaurua te -\frac{6}{5} mō b ki -2a-b=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
-2a=-\frac{6}{5}
Me tango \frac{6}{5} mai i ngā taha e rua o te whārite.
a=\frac{3}{5}
Whakawehea ngā taha e rua ki te -2.
a=\frac{3}{5},b=-\frac{6}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}