\left\{ \begin{array} { l } { - 4 x - 2 y = - 16 } \\ { 7 x - 5 y = 11 } \end{array} \right.
Whakaoti mō x, y
x=3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x-2y=-16,7x-5y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x-2y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=2y-16
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(2y-16\right)
Whakawehea ngā taha e rua ki te -4.
x=-\frac{1}{2}y+4
Whakareatia -\frac{1}{4} ki te -16+2y.
7\left(-\frac{1}{2}y+4\right)-5y=11
Whakakapia te -\frac{y}{2}+4 mō te x ki tērā atu whārite, 7x-5y=11.
-\frac{7}{2}y+28-5y=11
Whakareatia 7 ki te -\frac{y}{2}+4.
-\frac{17}{2}y+28=11
Tāpiri -\frac{7y}{2} ki te -5y.
-\frac{17}{2}y=-17
Me tango 28 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 2+4
Whakaurua te 2 mō y ki x=-\frac{1}{2}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+4
Whakareatia -\frac{1}{2} ki te 2.
x=3
Tāpiri 4 ki te -1.
x=3,y=2
Kua oti te pūnaha te whakatau.
-4x-2y=-16,7x-5y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-2\\7&-5\end{matrix}\right))\left(\begin{matrix}-16\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{-2}{-4\left(-5\right)-\left(-2\times 7\right)}\\-\frac{7}{-4\left(-5\right)-\left(-2\times 7\right)}&-\frac{4}{-4\left(-5\right)-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}&\frac{1}{17}\\-\frac{7}{34}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}-16\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{34}\left(-16\right)+\frac{1}{17}\times 11\\-\frac{7}{34}\left(-16\right)-\frac{2}{17}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=2
Tangohia ngā huānga poukapa x me y.
-4x-2y=-16,7x-5y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\left(-4\right)x+7\left(-2\right)y=7\left(-16\right),-4\times 7x-4\left(-5\right)y=-4\times 11
Kia ōrite ai a -4x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
-28x-14y=-112,-28x+20y=-44
Whakarūnātia.
-28x+28x-14y-20y=-112+44
Me tango -28x+20y=-44 mai i -28x-14y=-112 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y-20y=-112+44
Tāpiri -28x ki te 28x. Ka whakakore atu ngā kupu -28x me 28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-34y=-112+44
Tāpiri -14y ki te -20y.
-34y=-68
Tāpiri -112 ki te 44.
y=2
Whakawehea ngā taha e rua ki te -34.
7x-5\times 2=11
Whakaurua te 2 mō y ki 7x-5y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-10=11
Whakareatia -5 ki te 2.
7x=21
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 7.
x=3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}