\left\{ \begin{array} { l } { - 4 x + y = - 15 } \\ { 2 x - 3 y = 5 } \end{array} \right.
Whakaoti mō x, y
x=4
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x+y=-15,2x-3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x+y=-15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=-y-15
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(-y-15\right)
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{4}y+\frac{15}{4}
Whakareatia -\frac{1}{4} ki te -y-15.
2\left(\frac{1}{4}y+\frac{15}{4}\right)-3y=5
Whakakapia te \frac{15+y}{4} mō te x ki tērā atu whārite, 2x-3y=5.
\frac{1}{2}y+\frac{15}{2}-3y=5
Whakareatia 2 ki te \frac{15+y}{4}.
-\frac{5}{2}y+\frac{15}{2}=5
Tāpiri \frac{y}{2} ki te -3y.
-\frac{5}{2}y=-\frac{5}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1+15}{4}
Whakaurua te 1 mō y ki x=\frac{1}{4}y+\frac{15}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Tāpiri \frac{15}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=1
Kua oti te pūnaha te whakatau.
-4x+y=-15,2x-3y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-15\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-15\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-15\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-4\left(-3\right)-2}&-\frac{1}{-4\left(-3\right)-2}\\-\frac{2}{-4\left(-3\right)-2}&-\frac{4}{-4\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}-15\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}&-\frac{1}{10}\\-\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-15\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}\left(-15\right)-\frac{1}{10}\times 5\\-\frac{1}{5}\left(-15\right)-\frac{2}{5}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=1
Tangohia ngā huānga poukapa x me y.
-4x+y=-15,2x-3y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-4\right)x+2y=2\left(-15\right),-4\times 2x-4\left(-3\right)y=-4\times 5
Kia ōrite ai a -4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
-8x+2y=-30,-8x+12y=-20
Whakarūnātia.
-8x+8x+2y-12y=-30+20
Me tango -8x+12y=-20 mai i -8x+2y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-12y=-30+20
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=-30+20
Tāpiri 2y ki te -12y.
-10y=-10
Tāpiri -30 ki te 20.
y=1
Whakawehea ngā taha e rua ki te -10.
2x-3=5
Whakaurua te 1 mō y ki 2x-3y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=8
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 2.
x=4,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}