\left\{ \begin{array} { l } { - 4 x + 3 y = 13 } \\ { 15 x + 3 y = - 6 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x+3y=13,15x+3y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x+3y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=-3y+13
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(-3y+13\right)
Whakawehea ngā taha e rua ki te -4.
x=\frac{3}{4}y-\frac{13}{4}
Whakareatia -\frac{1}{4} ki te -3y+13.
15\left(\frac{3}{4}y-\frac{13}{4}\right)+3y=-6
Whakakapia te \frac{3y-13}{4} mō te x ki tērā atu whārite, 15x+3y=-6.
\frac{45}{4}y-\frac{195}{4}+3y=-6
Whakareatia 15 ki te \frac{3y-13}{4}.
\frac{57}{4}y-\frac{195}{4}=-6
Tāpiri \frac{45y}{4} ki te 3y.
\frac{57}{4}y=\frac{171}{4}
Me tāpiri \frac{195}{4} ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{57}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{4}\times 3-\frac{13}{4}
Whakaurua te 3 mō y ki x=\frac{3}{4}y-\frac{13}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-13}{4}
Whakareatia \frac{3}{4} ki te 3.
x=-1
Tāpiri -\frac{13}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=3
Kua oti te pūnaha te whakatau.
-4x+3y=13,15x+3y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&3\\15&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&3\\15&3\end{matrix}\right))\left(\begin{matrix}-4&3\\15&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\15&3\end{matrix}\right))\left(\begin{matrix}13\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&3\\15&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\15&3\end{matrix}\right))\left(\begin{matrix}13\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\15&3\end{matrix}\right))\left(\begin{matrix}13\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-4\times 3-3\times 15}&-\frac{3}{-4\times 3-3\times 15}\\-\frac{15}{-4\times 3-3\times 15}&-\frac{4}{-4\times 3-3\times 15}\end{matrix}\right)\left(\begin{matrix}13\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{19}&\frac{1}{19}\\\frac{5}{19}&\frac{4}{57}\end{matrix}\right)\left(\begin{matrix}13\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{19}\times 13+\frac{1}{19}\left(-6\right)\\\frac{5}{19}\times 13+\frac{4}{57}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=3
Tangohia ngā huānga poukapa x me y.
-4x+3y=13,15x+3y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-15x+3y-3y=13+6
Me tango 15x+3y=-6 mai i -4x+3y=13 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4x-15x=13+6
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19x=13+6
Tāpiri -4x ki te -15x.
-19x=19
Tāpiri 13 ki te 6.
x=-1
Whakawehea ngā taha e rua ki te -19.
15\left(-1\right)+3y=-6
Whakaurua te -1 mō x ki 15x+3y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-15+3y=-6
Whakareatia 15 ki te -1.
3y=9
Me tāpiri 15 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 3.
x=-1,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}