Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x+5y=1,4x-y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{5}{3}y-\frac{1}{3}
Whakareatia -\frac{1}{3} ki te -5y+1.
4\left(\frac{5}{3}y-\frac{1}{3}\right)-y=10
Whakakapia te \frac{5y-1}{3} mō te x ki tērā atu whārite, 4x-y=10.
\frac{20}{3}y-\frac{4}{3}-y=10
Whakareatia 4 ki te \frac{5y-1}{3}.
\frac{17}{3}y-\frac{4}{3}=10
Tāpiri \frac{20y}{3} ki te -y.
\frac{17}{3}y=\frac{34}{3}
Me tāpiri \frac{4}{3} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}\times 2-\frac{1}{3}
Whakaurua te 2 mō y ki x=\frac{5}{3}y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{10-1}{3}
Whakareatia \frac{5}{3} ki te 2.
x=3
Tāpiri -\frac{1}{3} ki te \frac{10}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=2
Kua oti te pūnaha te whakatau.
-3x+5y=1,4x-y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&5\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-5\times 4}&-\frac{5}{-3\left(-1\right)-5\times 4}\\-\frac{4}{-3\left(-1\right)-5\times 4}&-\frac{3}{-3\left(-1\right)-5\times 4}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{5}{17}\\\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}+\frac{5}{17}\times 10\\\frac{4}{17}+\frac{3}{17}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=2
Tangohia ngā huānga poukapa x me y.
-3x+5y=1,4x-y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-3\right)x+4\times 5y=4,-3\times 4x-3\left(-1\right)y=-3\times 10
Kia ōrite ai a -3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
-12x+20y=4,-12x+3y=-30
Whakarūnātia.
-12x+12x+20y-3y=4+30
Me tango -12x+3y=-30 mai i -12x+20y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-3y=4+30
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=4+30
Tāpiri 20y ki te -3y.
17y=34
Tāpiri 4 ki te 30.
y=2
Whakawehea ngā taha e rua ki te 17.
4x-2=10
Whakaurua te 2 mō y ki 4x-y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=12
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 4.
x=3,y=2
Kua oti te pūnaha te whakatau.