Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x+5y=-16,-5x-4y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+5y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-5y-16
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-5y-16\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{5}{3}y+\frac{16}{3}
Whakareatia -\frac{1}{3} ki te -5y-16.
-5\left(\frac{5}{3}y+\frac{16}{3}\right)-4y=-2
Whakakapia te \frac{5y+16}{3} mō te x ki tērā atu whārite, -5x-4y=-2.
-\frac{25}{3}y-\frac{80}{3}-4y=-2
Whakareatia -5 ki te \frac{5y+16}{3}.
-\frac{37}{3}y-\frac{80}{3}=-2
Tāpiri -\frac{25y}{3} ki te -4y.
-\frac{37}{3}y=\frac{74}{3}
Me tāpiri \frac{80}{3} ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{37}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}\left(-2\right)+\frac{16}{3}
Whakaurua te -2 mō y ki x=\frac{5}{3}y+\frac{16}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-10+16}{3}
Whakareatia \frac{5}{3} ki te -2.
x=2
Tāpiri \frac{16}{3} ki te -\frac{10}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-2
Kua oti te pūnaha te whakatau.
-3x+5y=-16,-5x-4y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-3\left(-4\right)-5\left(-5\right)}&-\frac{5}{-3\left(-4\right)-5\left(-5\right)}\\-\frac{-5}{-3\left(-4\right)-5\left(-5\right)}&-\frac{3}{-3\left(-4\right)-5\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{37}&-\frac{5}{37}\\\frac{5}{37}&-\frac{3}{37}\end{matrix}\right)\left(\begin{matrix}-16\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{37}\left(-16\right)-\frac{5}{37}\left(-2\right)\\\frac{5}{37}\left(-16\right)-\frac{3}{37}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-2
Tangohia ngā huānga poukapa x me y.
-3x+5y=-16,-5x-4y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-3\right)x-5\times 5y=-5\left(-16\right),-3\left(-5\right)x-3\left(-4\right)y=-3\left(-2\right)
Kia ōrite ai a -3x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
15x-25y=80,15x+12y=6
Whakarūnātia.
15x-15x-25y-12y=80-6
Me tango 15x+12y=6 mai i 15x-25y=80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-25y-12y=80-6
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-37y=80-6
Tāpiri -25y ki te -12y.
-37y=74
Tāpiri 80 ki te -6.
y=-2
Whakawehea ngā taha e rua ki te -37.
-5x-4\left(-2\right)=-2
Whakaurua te -2 mō y ki -5x-4y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+8=-2
Whakareatia -4 ki te -2.
-5x=-10
Me tango 8 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -5.
x=2,y=-2
Kua oti te pūnaha te whakatau.