\left\{ \begin{array} { l } { - 3 ( 3 x - y ) = 2 ( y + x ) } \\ { - 3 ( 2 x + y ) = 2 ( x - 3 y ) } \end{array} \right.
Whakaoti mō x, y
x=0
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x+3y=2\left(y+x\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3x-y.
-9x+3y=2y+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+x.
-9x+3y-2y=2x
Tangohia te 2y mai i ngā taha e rua.
-9x+y=2x
Pahekotia te 3y me -2y, ka y.
-9x+y-2x=0
Tangohia te 2x mai i ngā taha e rua.
-11x+y=0
Pahekotia te -9x me -2x, ka -11x.
-6x-3y=2\left(x-3y\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+y.
-6x-3y=2x-6y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3y.
-6x-3y-2x=-6y
Tangohia te 2x mai i ngā taha e rua.
-8x-3y=-6y
Pahekotia te -6x me -2x, ka -8x.
-8x-3y+6y=0
Me tāpiri te 6y ki ngā taha e rua.
-8x+3y=0
Pahekotia te -3y me 6y, ka 3y.
-11x+y=0,-8x+3y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-11x+y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-11x=-y
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{11}\left(-1\right)y
Whakawehea ngā taha e rua ki te -11.
x=\frac{1}{11}y
Whakareatia -\frac{1}{11} ki te -y.
-8\times \frac{1}{11}y+3y=0
Whakakapia te \frac{y}{11} mō te x ki tērā atu whārite, -8x+3y=0.
-\frac{8}{11}y+3y=0
Whakareatia -8 ki te \frac{y}{11}.
\frac{25}{11}y=0
Tāpiri -\frac{8y}{11} ki te 3y.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{11}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=0
Whakaurua te 0 mō y ki x=\frac{1}{11}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0,y=0
Kua oti te pūnaha te whakatau.
-9x+3y=2\left(y+x\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3x-y.
-9x+3y=2y+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+x.
-9x+3y-2y=2x
Tangohia te 2y mai i ngā taha e rua.
-9x+y=2x
Pahekotia te 3y me -2y, ka y.
-9x+y-2x=0
Tangohia te 2x mai i ngā taha e rua.
-11x+y=0
Pahekotia te -9x me -2x, ka -11x.
-6x-3y=2\left(x-3y\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+y.
-6x-3y=2x-6y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3y.
-6x-3y-2x=-6y
Tangohia te 2x mai i ngā taha e rua.
-8x-3y=-6y
Pahekotia te -6x me -2x, ka -8x.
-8x-3y+6y=0
Me tāpiri te 6y ki ngā taha e rua.
-8x+3y=0
Pahekotia te -3y me 6y, ka 3y.
-11x+y=0,-8x+3y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-11&1\\-8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-11&1\\-8&3\end{matrix}\right))\left(\begin{matrix}-11&1\\-8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-11&1\\-8&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-11&1\\-8&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-11&1\\-8&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-11&1\\-8&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-11\times 3-\left(-8\right)}&-\frac{1}{-11\times 3-\left(-8\right)}\\-\frac{-8}{-11\times 3-\left(-8\right)}&-\frac{11}{-11\times 3-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{25}&\frac{1}{25}\\-\frac{8}{25}&\frac{11}{25}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
x=0,y=0
Tangohia ngā huānga poukapa x me y.
-9x+3y=2\left(y+x\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3x-y.
-9x+3y=2y+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+x.
-9x+3y-2y=2x
Tangohia te 2y mai i ngā taha e rua.
-9x+y=2x
Pahekotia te 3y me -2y, ka y.
-9x+y-2x=0
Tangohia te 2x mai i ngā taha e rua.
-11x+y=0
Pahekotia te -9x me -2x, ka -11x.
-6x-3y=2\left(x-3y\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+y.
-6x-3y=2x-6y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3y.
-6x-3y-2x=-6y
Tangohia te 2x mai i ngā taha e rua.
-8x-3y=-6y
Pahekotia te -6x me -2x, ka -8x.
-8x-3y+6y=0
Me tāpiri te 6y ki ngā taha e rua.
-8x+3y=0
Pahekotia te -3y me 6y, ka 3y.
-11x+y=0,-8x+3y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8\left(-11\right)x-8y=0,-11\left(-8\right)x-11\times 3y=0
Kia ōrite ai a -11x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -11.
88x-8y=0,88x-33y=0
Whakarūnātia.
88x-88x-8y+33y=0
Me tango 88x-33y=0 mai i 88x-8y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y+33y=0
Tāpiri 88x ki te -88x. Ka whakakore atu ngā kupu 88x me -88x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
25y=0
Tāpiri -8y ki te 33y.
y=0
Whakawehea ngā taha e rua ki te 25.
-8x=0
Whakaurua te 0 mō y ki -8x+3y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Whakawehea ngā taha e rua ki te -8.
x=0,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}